7th International Conference on New Developments In Photodetection

Tours, France, June 30th to July 4th 2014

PHOTON DETECTION AND IMAGING WITH GASEOUS COUNTERS

NDIP

Fabio Sauli TERA Foundation and CERN

PHOTON ABSORPTION

 $I_{\theta}: \text{ incoming flux}$ I: outgoing flux $I = I_{0} e^{-\frac{x}{I}} = I_{0} e^{-mC}$ $I = \frac{1}{NS} \qquad N = N_{0} \frac{r}{A}$

l: absorption length (cm)
μ: mass absorption coefficient (cm²g⁻¹)
ρ: density (g cm⁻³)
N: atoms (molecules) cm⁻³
s: absorption cross section (cm²)
A: Avogadro number

Fabio Sauli – Photon Detection and Imaging with Gaseous Detectors – NDIP14

1

PHOTON ABSORPTION CROSS SECTION

 $1 \text{ Mbarn} = 10^{-18} \text{ cm}^2$

Fabio Sauli – Photon Detection and Imaging with Gaseous Detectors – NDIP14

2

UV PHOTONS ABSORPTION

(Academic Press NY 1967)

MOLECULAR GASES: TOTAL AND IONIZATION CROSS SECTIONS

A CURIOUS OBSERVATION: INFRARED SENSITIVITY?

STUDY OF GLOW DISCHARGES IN MWPCs Rutherford Lab (1979)

J.B. Marsh, K.H. Souten and B. O'Hagan RL-79-038 (1979)

Triethylamine (TEA) $(C_2H_5)_3N$ $E_i = 7.5 \text{ eV}$

VISIBLE PHOTOCATHODES WITH GASEOUS COUNTERS

GAS ELECTRON MULTIPLIER (GEM) WITH SEMI-TRANSPARENT PHOTOCATHODE

hν window photocathode* GEM1 15 quantum efficiency [%] 10 5 K-Cs-Sb Ar/CH, (95:5) 700torr 300 350 400 450 500 550 wavelenghth [nm]

PROBLEMS OF ION BACKFLOW:GAIN DIVERGENCY DUE TO PHOTON FEEDBACKPHOTOCATHODE DAMAGE DUE TO IONBOMBARDMENT

D. Mörmann et al, Nucl. Instr. and Meth. A504(2003)93

NEW STRUCTURES: COBRA, MICRO-HOLES AND STRIPS, PACEM....

R. Chechik, A. Breskin, Nucl. Instr. and Meth. A595(2008)116

CsI QUANTUM EFFICIENCY

FIELD DEPENDENCE OF THE

PHOTOELECTRON EXTRACTION EFFICIENCY

UV GLASS AND FLUORIDE CRYSTALS:

SOFT X-RAYS: ABSORPTION LENGTH AND DETECTION EFFICIENCY

GASES AT STANDARD TEMPERATURE AND PRESSURE (STP: 0^oC, 1 atm):

5.9 keV ⁵⁵Fe SOURCE IN ARGON:

FY=FLUORESCENCE/TOTAL

ANGULAR DISTRIBUTION AND RANGE OF PHOTOELECTRONS

RANGE:
$$E_e = E_{\gamma} - E_K = 2.7$$
 keV in Ar

42 keV PHOTONS ON XENON

X-RAYS DETECTION EFFICIENCY

1 cm, STP

HARD X AND GAMMA RAYS: CONVERTERS

DETECTION EFFICIENCY:

$$e = 1 - e^{-\frac{s}{7}}$$

s: converter thickness λ : absorption length

HEAVY DRIFT CHAMBER

Fabio Sauli – Photon Detection and Imaging with Gaseous Detectors – NDIP14

19

HARD X AND GAMMA RAYS: INTERNAL CONVERTERS

GAS ELECTRON MULTIPLIER (GEM) Au-COATED

Fabio Sauli – Photon Detection and Imaging with Gaseous Detectors – NDIP14

HARD X AND GAMMA RAYS: INTERNAL CONVERTERS

DETECTION OF 511 keV γ FOR PET MULTI-GAP RESISTIVE PLATE CHAMBER

$400 \ \mu m \ HIGH \ RESISTIVITY \ GLASS \ PLATES$

ELECTRONS DRIFT IN UNIFORM FIELD

DRIFT VELOCITY

DIFFUSION

COMPUTED WITH MAGBOLTZ:

http://rjd.web.cern.ch/rjd/cgi-bin/cross

AVALANCHE CHARGE MULTIPLICATION

Mean free path for ionization:

$$/ = \frac{1}{Ns}$$
 N: molecules/cm³

Townsend coefficient:

 $a = \frac{1}{/} \quad Ionizing \ collisions/cm \qquad \frac{\partial}{P} = f_{\zeta}^{\&} \frac{E_0}{P_{\emptyset}}$

S.C. Brown, Basic Data of Plasma Physics (MIT Press, 1959)

CHARGE MULTIPLICATION IN UNIFORM FIELD

Incremental increase of the number of electrons in the avalanche: dn = n a dx

Multiplication factor or Gain:

$$M(\mathbf{x}) = \frac{n}{n_0} = e^{\partial \mathbf{x}}$$

Maximum avalanche size before discharge (Raether limit): $Q_{MAX} \approx 10^7 \text{ e}$

H. Raether, Electron Avalanches and Breakdown in Gases (Butterworth 1964)

ELECTRON AVALANCHE: FURRY STATISTICS

SINGLE ELECTRON AVALANCHE SIZE DISTRIBUTION

$$P(n) = \frac{e^{-n/n}}{\overline{n}} \qquad \overline{n} = e^{2x} \qquad S_{\overline{n}} = \overline{n}$$

N ELECTRONS:

SINGLE ELECTRON AVALANCHE: POLYA STATISTICS

AVALANCHE DISTRIBUTION AT INCREASING GAINS (FIELDS) POLYA DISTRIBUTION

H. Schindler, S.F. Biagi, R. Veenhof, Calculation of gas gain fluctuations in uniform fields Nucl. Instr. and Meth. A624(2010)78 **EXPERIMENTAL:**

H. Sclumbohm, Zeit. Physik 151(1958)563

GAS ELECTRON MULTIPLIER (GEM)

SINGLE ELECTRON AVALANCHE IN MPGD

SINGLE ELECTRON AVALANCHE

CsI-COATED MICROMEGAS WITH TIMEPIX READOUT

J. Melai et al, Nucl. Instr. and Meth, A628(2011)133

SOFT X-RAYS: ENERGY RESOLUTION

Energy resolution:	$ \begin{array}{c} & \underbrace{\mathscr{E}_{E}}_{e} \underbrace{\mathscr{E}_{E}}_{i} \underbrace{\overset{\circ}{\mathcal{E}}}_{e}^{2} = \underbrace{\mathscr{E}_{N}}_{e} \underbrace{\mathscr{E}_{N}}_{i} \underbrace{\overset{\circ}{\mathcal{E}}}_{i}^{2} + \underbrace{\mathscr{E}_{N}}_{i} \underbrace{\overset{\circ}{\mathcal{E}}}_{i}^{2} + \underbrace{\mathscr{E}_{N}}_{i} \underbrace{\mathscr{E}_{N}}_{i} \underbrace{\overset{\circ}{\mathcal{E}}}_{i}^{2} + \underbrace{\mathscr{E}_{N}}_{i} \underbrace{\overset{\ast}{\mathcal{E}}}_{i}^{2} + \underbrace{\mathscr{E}_{N}}_{i} \underbrace{\mathscr{E}}_{i}^{2} + \underbrace{\mathscr{E}}_{i} \underbrace{\mathscr{E}}_{i}^{2} + \underbrace{\mathscr{E}}_{i} \underbrace{\mathscr{E}}_{i}^{2} + \underbrace{\mathscr{E}}_{i} \underbrace{\mathscr{E}}_{i} \underbrace{\mathscr{E}}_{i}^{2} + \underbrace{\mathscr{E}}_{i} \underbrace{\mathscr{E}}_{i} \underbrace{\mathscr{E}}_{i}^{2} + \underbrace{\mathscr{E}}_{i} \underbrace{\mathscr{E}}_{i} \underbrace{\mathscr{E}}_{i} - \underbrace{\mathscr{E}}_{i} \underbrace{\mathscr{E}}_{i} - \underbrace{\mathscr{E}}_{i$	$ \overset{a}{e} \frac{S_M}{M} \overset{\ddot{o}^2}{\dot{b}} $		
	↑ Ionization	Avalanche statistics		
Average gain:	$\boldsymbol{M} = \frac{1}{N} \bigotimes_{i=1}^{N} \boldsymbol{A}_{i} = \overline{\boldsymbol{A}}$	A_i : single electron av	alanche size	
Gain variance:	$S_{M}^{2} = \overset{a}{\underset{e}{\cup}} \frac{1}{N} \overset{o}{\overset{o}{\partial}}^{2} \overset{N}{\underset{i=1}{\overset{o}{\partial}}} S_{A}^{2}$	$ \overset{\mathfrak{A}}{\overset{C}{\overset{M}{\overset{M}{\overset{C}{\overset{M}}}}}}}}}$		
Furry statistics:	$S_A = \overline{A}$	$\frac{S_A \ddot{\theta}^2}{\overline{A} \dot{\theta}} = 1$		
Polya statistics:	$ \overset{\mathfrak{A}}{C} \frac{S_{A}}{\overline{A}} \overset{\ddot{O}^2}{\dot{\mathfrak{G}}} = \frac{1}{\overline{A}} + $	$b b = \frac{1}{1+q}$		
			FANO FA	CTORS
Ionization variance:	$S_N^2 = FN$	F: Fano factor	GAS	F
$e^{\frac{2}{E}\frac{S_{E}}{O}^{2}} = \frac{1}{I}$	1 V(F+b)		Ar Ar-CH ₄	0.19 0.19
Furry: <i>b</i> =1	Polya: <i>b</i> = 1/(1 -	<i>q</i>)	Xe Ne+0.5%	<0.17 Ar

Fabio Sauli – Photon Detection and Imaging with Gaseous Detectors – NDIP14

29

0.05

SOFT X-RAYS ENERGY RESOLUTION

Fabio Sauli – Photon Detection and Imaging with Gaseous Detectors – NDIP14

M

d

M

MICROMEGAS ENERGY RESOLUTION

INGRID: MICROMEGAS WITH TIMEPIX READOUT

GAP INDEPENDENCE OF GAIN

5.9 keV ⁵⁵Fe in Ar-CH₄ 90-10

ELECTRON COUNTING

SCINTILLATION PROPORTIONAL COUNTERS

PHOTON EMISSION BEFORE CHARGE MULTIPLICATION: NO AVALANCHE DISPERSIONS

NOBLE GASES SCINTILLATION SPECTRA ~1bar

SCINTILLATION COUNTERS

ENERGY RESOLUTION: CLOSE TO STATISTICAL LIMIT

SINGLE WIRE COUNTER

E. Rutherford and H. Geiger, Proc. Royal Soc. A81 (1908)141

MULTI-WIRE PROPORTIONAL CHAMBER

G. Charpak et al, Nucl. Instr. and Meth. 62(1968)262

COUNTER GAIN: PROPORTIONAL TO STREAMER

Fabio Sauli – Photon Detection and Imaging with Gaseous Detectors – NDIP14

<u>36</u>

RAETHER LIMIT

TOTAL CHARGE Q > 10⁷----> DISCHARGE

EFFECTS OF DISCHARGES IN MSGCs

Fabio's Museum of Horrors

Ioannis Giomataris (1996)

HIGH/LOW FIELD REGIONS SEPARATED BY A MESH

MICROMEGAS FOR THE COMPASS EXPERIMENT AT CERN

12 planes in 3 stations X,Y, U, V
40x40 cm² active
350 µm strips with digital readout

SPACE RESOLUTION:

C. Bernet et al, Nucl. Instr. and Meth. A536(2005)61

Fabio Sauli – Photon Detection and Imaging with Gaseous Detectors – NDIP14

hres

72994

LARGE SIZE MICROMEGAS

J. Wotschack, RD51 Meeting (CERN 2013)

J. Wotschack, JINST 7, C02021 (2012)

Fabio Sauli (1997)

STANDARD GEM:70 μm Ø at 140 μm PITCH

THIN (50 µm) METAL-COATED POLYMER FOIL WITH HIGH DENSITY OF HOLES:

F. Sauli, Nucl. Instr. and Meth. A386(1997)531

TRIPLE GEM DETECTOR FOR COMPASS

 $31x31 \text{ cm}^2$ active Total thickness in active area ~ 0.7% X₀

2-D readout board: 400 µm pitch strips

22 DETECTORS, OPERATIONAL 2002-2012

C. Altumbas et al, Nucl. Instr. and Meth. A490(2002)177

B. Ketzer et al, Nucl. Instr. and Meth. A535(2004)314

LARGE SIZE GEM DETECTORS

M. Tytgat, MPGD 2013

D. Abbaneo et al, JINST 9(2014)C01053

SPARK PROBABILITY IN HADRON BEAM

FOR A GAIN OF 5.10^3 , 10^6 PARTICLES s⁻¹: ~ ONE DISCHARGE PER SECOND

A. Delbart et al, Nucl. Instr. and Meth. A478(2002)205

J. Galán et al, Nucl. Instr. and Meth. A732(2013)229

C. Büttner et al, Nucl. Instr. and Meth. A409(1998)79

WHAT ABOUT THE RAETHER LIMIT?

IN MULTI-GEMS, THE CHARGE SPREADS OVER MANY INDEPENDENT HOLES!

COMPASS RING IMAGING CHERENKOV COUNTER (RICH)

GEM WITH REFLECTIVE CsI PHOTOCATHODE COATING

GEM WITH SILICON PIXEL READOUT

X-RAY POLARIMETER

GEM WITH SILICON PIXEL READOUT

R. Bellazzini et al, Nucl. Instr. and Meth. A581(2007)246

THICK GEM

MECHANICAL DRILLING OF METAL-CLAD PC BOARD:

- SELF-SUPPORTING
- HIGH GAIN

R.Chechik et al, Nucl. Instr. and Meth. A535(2004)303

A. Breskin et al, Nucl. Instr. And Meth. A623(2010)132

ALSO NAMED LARGE ELECTRON MULTIPLIER (LEM)

P. Janneret, Thesis at Neuchatel University (2001)

A. Badertscher et al, Nucl. Instr. And Meth. A617(2010)188

UV PHOTONS DETECTION: THICK GEM

DEVELOPMENT FOR THE COMPASS RICH UPGRADE

GAIN

COMPASS RICH UPGRADE

COMPASS RICH UPGRADE PROTOTYPE TRIPLE-THICK GEM CsI-COATED 30x30 cm²

9-PHOTONS RING

M. Alexeev et al, Nucl. Instr. and Meth. A732(2013)264

THIS IS THE END

AND IF YOU WANT TO KNOW MORE...

GET A COPY (75 £) AT:

www.cambridge.org/9781107043015

20% OFF WHEN ORDERING: ENTER DISCOUNT CODE F4GASEOUS

THANKS FOR YOUR ATTENTION