

Large Synoptic Survey Telescope

www.lsst.org

Pocket Pumped Image Analysis

Ivan Kotov Brookhaven National Laboratory

Instrumentation Division Seminar • November 13, 2013

POCKET PUMPED IMAGE, ds9 viewer

Trap identification. Amplitude distribution. Leveling the field (Base Line subtraction)

Trap identification. Amplitude distribution

Trap identification. Amplitude-Amplitude plot

Trap identification. Amplitude-Amplitude plot

Trap identification. Correlator

$$C_2 = \frac{amp_i}{\sigma} * \frac{amp_{i+1}}{\sigma}$$

the parabolic shape is expected for amplitude dependence since amount of charge lost in one pixel is equal to amount of charge gained by another pixel and $C_2 \sim -amp^2$

Trap count

Trap count

Trap catalog

			SAO	Image ds9					_ • ×
File Edit View Frame	Bin Zoom So	cale Color Regio	n WCS Analy	rsis Help					
File 201305231813 Value Image X	Y	2]							
file edit	view	frame	bin	zoom	scale	color	region	wcs	help
information	front	back	all	none	de	lete	list	load	save

POCKET PUMPED IMAGE. CONCLUSION

Trap identification technique has been developed.

This technique works on pocket pumped images.

- traps can be counted in individual columns, rows etc
- trap location can be reported as well, for example, trap catalog can be generated

Back up slides

Transformations

The selection of trap bands in the amplitude scatter plot can be simplified using coordinate system transformation. The useful transformation is rotation by 45 degree

$$A + = (amp_i + amp_{i+1})/\sqrt{2}$$
$$A - = (amp_{i+1} - amp_i)/\sqrt{2}$$

Transformations

Charge Transfer Efficiency

- **CTE** = Charge Transfer Efficiency (typically 0.9999 to 0.999999) = fraction of electrons transferred from one pixel to the next
- **CTI** = Charge Transfer Inefficiency = 1 CTE (typically 10^{-6} to 10^{-4}) = fraction of electrons deferred by one pixel or more

Cause of CTI:

charges are trapped (and later released) by defects in the silicon crystal lattice

CTE of 0.99999 used to be thought of as pretty good but

Think of a 2K x 0.5K CCD segment

- Three Mirror Anastigmat (TMA) optical design.
 - 8.4 meter primary, 6.5 meter effective aperture
 - 3.4 meter diameter secondary
 - 5 m tertiary is being fabricated in same substrate as primary mirror
 - three-element refractive corrector
 - f/1.2 beam delivered to camera
 - 9.6 square degree field (on science imaging pixels)
 - optics deliver < 0.2 arcsec FWHM spot diagram,
 - 6 filters: ugrizy: 320 nm to 1050 nm (UV atmospheric cutoff to Si bandgap)
- 3.0 Gpixel camera
 - 10 micron pixels, 0.2 arcsec/pixel
 - Deep depletion (100 μm), high-resistivity CCDs for NIR response
 - Dual 15 second exposures (to avoid trailing of solar system objects)
 - 2 second readout (trade between noise and imaging efficiency)
 - 550 kpix/sec through 16 amps/CCD x 189 CCDs = 3024 channels
 - 12 GBytes per image (as floating point numbers), 20 TBytes/night.
- Real-time frame subtraction for time domain alerts, ~850 visits for each patch of sky, allows co-adds to r ~ 27 (AB), over 18,000 square degrees.

- 3.2 Gigapixels
- 0.2 arcsec pixels
- 9.6 square degree FOV
- 2 second readout

1.65 m 5'-5"

- 6 filters

Parameter	Value			
Diameter	1.65 m			
Length	3.7 m			
Weight	3000 kg			
F.P. Diam	634 mm			

Primary/Tertiary in Fabrication, completion in 2014

