

Development of a 3D-Imaging Calorimeter in LaBr₃ for Gamma-Ray Space Astronomy

Aleksandar GOSTOJIĆ

CSNSM, Orsay, France

7th New Developmeants In Photodetection, Tours, France, 2014

Introduction: Gamma-ray instruments

GROUND BASED:

- ENERGY RANGE E > GeV
- INTERACTION IN ATMOSPHERE
- ELECTROMAGNETIC CASCADES
- FLASHES OF CHERENKOV LIGHT
- WIDE AREA OF DETECTION

H.E.S.S. - High Energy Stereoscopic System

INTEGRAL - INTErnational Gamma-Ray Astrophysics Laboratory

SPACEBORNE:

- ENERGY: **keV TeV**
- DETECTION ABOVE THE ATMOSPHERE
- BALLOONS AND SATELLITES
- PAIR PRODUCTION TELESCOPES, COMPTON, CODED MASK, GAMMA-RAY LENSES

Motivation: Gamma-ray astronomy and ESA's Cosmic Vision

- European proposals in response of ESA's call (2010) for a third Medium-size mission (program "Cosmic Vision 2015-2025"):
- DUAL (PI: CESR Toulouse): a Laue lens + a Compton telescope in Germanium
- GRIPS (PI: MPE Garching): a Compton telescope in Si (tracker) and LaBr₃
- CAPSITT (PI: APC Paris): a Compton telescope in Si (no calorimeter)

A single proposal for ESA's next call (M4 in 2014) !

Motivation: Sensitivity of current and previous instruments

Conceptual design of an Advanced Compton Telescope

Optimize background rejection (sensitivity), perform Compton imaging and polarization studies:
✓ Fine 3-D position resolution (~1 mm³) → Si DSSD (tracker)
✓ Good energy resolution → LaBr₃:Ce scintillator (calorimeter)

3D - Imaging calorimeter in LaBr₃:Ce

- LaBr₃:Ce scintillator : good energy resolution, high stopping power, very fast response
- **3D position** resolution Anger-camera-like module

Coupling of LaBr₃:Ce crystals (St Gobain) to a multianode PMTs (Hamamatsu)

Dedicated test bench (mechanics, electronics)

Measurement of scintillation signal distributions

- TOTAL COLLECTED CHARGE
- DISTRIBUTED IN 8 x 8 GRID
- 1 BIN : 1 MAPMT CHANNEL
- EXP. STATISTICS: 50k EVENTS
- 1 EVENT : 64 MATRIX

HAMAMATSU H8500C MULTIANODE PHOTOMULTIPLIER:

Detector module in detail

GEANT4 – UNIFIED model parameters

Results: measurements and simulation

Detector characterization (1): 2D Position resolution

Center of gravity - Anger logic

- 11 diagonal points with ²⁴¹Am source
- 4,9,16,25,36 channels (pixels) for different precision
- **Artificial Neural Network** (ANN)
- JETNET 3.0 package
- **10 Inputs: center of gravity** values for X and Y
- 2 Outputs: X and Y positions of the 1st γ -ray hit

Final error on 2D position resolution: standard deviation corrected for beam spot size: $\sigma \approx 1.7$ mm (from GEANT4 simulation)

Detector characterization (2): 3D Position resolution

Detector characterization (3): 3D Position resolution

Deviations around the true values for 2D coordinates (experimentally known)

X, Y – front plane of the detector

 $<\sigma_{x_{true}}> \approx 2.5 \text{ mm}$

<σ_{y_true}> ≈ **2.5 mm**

Deviation for the 3rd coordinate

Z – depth of interaction

<σ_z> ≈ 2.2 mm

Detector characterization (4): E dynamic range

Ag X rays LOW-END: - X rays Ag sheet irradiated 300 - MIN energy: 22 keV w/o Ag sheet Ag K_x - background + Ag K_x 200 counts x 10 Co60 γ lines Ba K_v + Auger 0.1 Counts (a.u.) 0.09 100 0.08 0.07 1.17 MeV 0.06 0 30 50 0 10 2040 60 70 80 0.05 1.33 MeV E (keV) 0.04 0.03 HIGH-END: - gamma-rays 0.02 - MAX energy: 1.3 MeV 0.01 0 1000 1250 1500 1750 2000 2250 2500 0 250 500

Charge (pC)

Detector characterization (5): Energy resolution

detector border) => 4.9 % -> 3.6 % at 662 keV

Overview

PACT: Pair And Compton Telescope

More information at:

astromev.eu