

Photo-detector development for nEXO Achieving optimum energy resolution with PPDs (SiPMs)

Fabrice Retière for EXO photodetector group

nEXO: a 5 ton liquid Xenon TPC

nEXO: at the conceptual stage

EXO-200 "operating" detector Two drift regions (central cathode) Charge collection on anode wires Light readout by ~500 APDs

EXO-200 looking for $0\nu\beta\beta$

Enricher on selvoror

for double beta decay

Light/charge fluctuations

June 30, 201

Scintillation photon detection requirements

• Excellent energy resolution mostly driven by light detection

- Parameters that matter
 - Efficiency
 - Collection: detector configuration
 - Detection: photodetector performance
 - Dark noise
 - Gain fluctuation / correlated avalanche
 - Electronics noise

Thank you S.Vinogradov						
Distribution	Geometric chain process		Branching Poisson process			
Primary event distribution	Non-random single (N=1)	Poisson (µ)	Non-random single (N=1)	Poisson (µ)		
ota erent	wor	KER	g this (Generalized Poisson (μ, λ)		
P(X=k)	$p^{k-1} \cdot (1-p)$ k = 1, 2	Ref. [8] k = 0, 1, 2	$\frac{(\lambda \cdot k)^{k-1} \cdot \exp(-k \cdot \lambda)}{k!}$ $k = 1, 2$	$\frac{\mu \cdot (\mu + \lambda \cdot k)^{k-1} \cdot \exp(-\mu - k \cdot \lambda)}{k!} \atop k = 0, 1, 2$		
E[X]	$\frac{1}{1-p}$	$\frac{\mu}{1-p}$	$\frac{1}{1-\lambda}$	$\frac{\mu}{1-\lambda}$		
Var[X]	$\frac{p}{(1-p)^2}$	$\frac{\mu \cdot (1+p)}{(1-p)^2}$	$\frac{\lambda}{(1-\lambda)^3}$	$\frac{\mu}{(1-\lambda)^3}$		
ENF	1+ p		$\frac{1}{1-\lambda} \sim 1 + p + \frac{3}{2}p^2 + o(p^3)$			

EXO-200 resolution limited by APD noise

TRIUMF nEXO baseline configuration Up to 4 m² of photo-detectors

Cathode

х

Trade-off between electric field uniformity and light collection

NDIP 2014

Light collection for silicon photodetectors

Configuration

- Field rings: 2cm pitch,
 4mm thick, 10mm long
- Reflectivity: field
 rings=0.9, cathode =0.9,
 anode=0.5
- 4m² photo-detector
 - Silicon on quartz

Aside about index of refraction

- n_{LXe} ~ n_{SiO2} ~ 1.7
- Re(n_{Si}) ~ 0.7-0.8
 - Surprisingly large uncertainty
- Very significant reflections at Lxe/SiO2-Si
 - Anti-reflective coating with MgF2?

- Reflected photons have a fair chance of being detected later on
 - Account for reflectivity in simulations
- Need careful scaling from measurements in gas/vacuum

APD, SiPMs, SiPMs+wavelength shifter or something else?

- PMTs no go because too radioactive
- APDs: high efficiency but limited production facilities (API phasing out production) and probably overwhelming electronics noise
- SiPMs
 - Pros: low electronics noise and gain fluctuation, large production facilities
 - Cons: low(?) efficiency at 175nm, large dark noise, large capacitance per unit area
- SiPMs + wavelength shifters: overcome issue of low efficiency at 175nm but more cumbersome
- Something else? Probably too short time scale

TRIUMF Energy resolution with SiPMs <1% throughout</p>

- Internal SiPM efficiency (excluding reflections) = 33%
 - Dark noise=500PE, Electronics noise=25PE, correlated noise=0.2

Critical items for achieving the required energy resolution

- High efficiency, low noise photo-detector
 - Target light collection * PD efficiency = 10%
 - Yield ~10,000 photoelectron (PE)
 - Dark noise and electronics noise must be <1,000 PE
 - Effective gain fluctuations <20%

- Highly reflective surfaces
 - Anode, Cathode and shaping rings

June 30, 2014

Work led by G.Cao (IHEP)

NDIP 2014

Passive optics development

- Best mirror solution: Aluminum covered by AIF3 or MgF2 can reach 90% reflectivity
 - Proven solution for in-space astronomy
- Open questions for nEXO
 - Material radiopurity
 - Conductivity of MgF2/AlF3 if deposited on cathode
 - Fabrication over large area? Find manufacturer or develop deposition solution
- Need to measure reflectivity vs angle at 175nm: VUV ellipsometry
 - Characterize small mirrors at 175nm
 - Measure index of refraction of silicon at 175nm

Photo-detector specification guidelines for the vendors

Parameters	Value
Photo-detection efficiency at 175-178nm (without AR coating measured in gas/vacuum)	≥15%
Radiopurity: contribution of photo-detectors to the overall background	<1%
Dark noise rate at -100°C	≤50Hz/mm ²
Average number of correlated avalanches per parent avalanche at -100°C	≤0.2
Single photo-detector active area	≥1cm ²
Gain fluctuations + electronics noise	<0.1PE
Pulse width (after possible electronics shaping)	<100ns
Single photon timing resolution (σ)	<1ns

Aggressive specifications that may need to be relaxed Goal is to find one or more suitable photo-detector candidate by 2016

Already a solution? Required performination observations achieved by Hamamatsu but radio-purity is a question

Achieved performance

↑17% of PDE (crosstalk & after pulse removed) is already achieved. Even higher PDE is expected after new technologies of Hamamatsu will be included.

Daisuke Kaneko, ICEPP, Univ. of Tokyo on behalf of MEG collaboration

↑Charge spectrum with 12×12mm MPPC

Photo-detector solutions

- FBK primary partner
 - Collaboration with Stanford for the development of SiPM for nEXO

- Other options
 - Hamamatsu
 - Need a way to assess radiopurity
 - RMD
 - SiPMs and APDs
 - SBIR being considered
 - Zecotek MRS-APD (SiPM)
 - Canada collaborative development
 - KETEK (Germany)
 - (Excelitas)

nEXO photo-detector R&D plan

Single photo-detector test setups

- Stanford setup
 - Being upgraded
 - Vacuum field
 - Gas Xe scintillation cell

- TRIUMF setup
 - Being constructed
 - N2 gas field
 - Xenon flash lamp & visible light for cross-check

FBK SiPM test results using Stanford setup

Inferred efficiency of new FBK devices~5% Inferred dark noise rate = 800Hz/mm2 at -104C

NDIP 2014

Work led by I.Ostrovskiy (Stanford) ²⁰

Large area readout issues

- PD area~4m2
- # channel~ 100-10,000
- Channel area up to 20×20cm²
- Common base option may work
 - Single photon identification compromise with >10nF
- Total power < 50W

Low radioactivity issue

- Hoping to have the photo-detectors contribute less than 1% of total background
 - ²³⁸U and ²³²Th are <9mBq/kg (<0.73pg/g) and <43mBq/kg (<10pg/g)
 - Impossible to measure by counting: 1kg of material yield 1 count in 30h.
- Assaying either by neutron activation in a reactor or Inductively Coupled Plasma Mass spectrometry
 - Measure content of stable isotopes and assume equilibrium
 - Assaying must happen in parallel with device characterization
- Low radioactivity packaging: looking at bounding Silicon chip on quartz plates

A lot to do!

- nEXO must identify a viable photo-detector in the next 2 years and develop high reflectivity mirrors
 - Critical to make a compelling case for 0nbb down select
- nEXO must also solve integration issues
 - Large area readout: 10×10cm² planes to be built in 2016
 - Low radioactivity packaging
- Fortunately, lots of work towards the development of SiPMs for use in LXe and LAr
 - Looking forward to several interesting talks this week!
 - And to possible collaborations within nEXO or between collaborations
 - And to organizing a dedicated workshop?

The end

Simulation details

Field shaping plates:

- ➤ Thickness → 0.5mm ~ 3mm
- ≻ Length → 5mm ~ 20mm

- To study light collection efficiency in above

parameter space.