

A new technique of characterization of the intrapixel response dedicated to astronomical large focal plane arrays

C. Ketchazo*a, T. Viale^b, O. Boulade^a, G. Druart^b, V. Moreau^a, L. Mugnier^b, D. Dubreuil^a, S. Derelle^b, S. Ronayette^a, N. Guérineau^b, M. Berthé^a ^aService d'Astrophysique, CEA Saclay, Orme des Mérisiers, Gif-sur-Yvette, 91191, France. ^bONERA, The French Aerospace Lab, F-91761, Palaiseau, France christian.ketchazo@cea.fr

NDIP, 30 June -4 July 2014 Tours (France)

Irfu Problematic: the pixel response is not uniform

Impacts of Intrapixel Variations: SPITZER example

- Influence of detector effects in photometry (IRAC SPITZER) ۲
 - IntraPixel Sensitivity Variation (IPSV): examples of pixel photometry maps

1.2

1.4

0.174

0.172

0.170

0.2

0.4

0.6

0.8

Time (dy)

1.0

Irfu Intrapixel variation impacts in the Euclid VIS ?

- Euclid VIS : Shape measurements
 - Illustration of WL measurement processes

- The resulting image depends on the detector effects
- We have to know the contribution of the detector:
 →Evaluation of the scientific performances of the detectors

Sirfu Measurement technique

- Idea: to measure the pixel response as a function of the position (x,y) on the whole sensitive area.
- Common use approach: the direct method

- Advantages and inconvenient
- © Simple to realize and analyze (direct approach)
- ➢ Requires excellent optics: stability, precision
- ◎ Requires high aperture optics
- [⊗] Time consuming

rfu **Measurement technique**

Our approach: indirect method

It consists to project discrete spatial frequencies onto the sensors without classic optics but using a self imaging property of the Continuously Self Imaging Grating (CSIG) and compute the output distribution of the spatial frequencies attenuated by the transfer function of the detector.

- Advantages an inconvenient ۲
 - Simplified optical setup
 - Time duration: only one acquisition can be enough
 - Aliasing effects
 - 8 Requires advanced data processing
- **SAp Objectives**
 - Develop a new test bench
 - To characterize the IPSV with a resolution of pix/10
 - Band: VIS, NIR, LIR

(First tests to carry with the Euclid VIS detector)

CEA DSM Irfu

- The talbot effect explanation
- 1. Diffraction and interferences: basic Young Slits experience
- 2. The Talbot effect explanation: many holes and displacement of the screen

Irfu The test bench: the talbot effect

• The continuously Self-Imaging Grating: 2D generalization of the talbot effect

Irfu The test bench: the image of the bench

Optics et source

- Source: LED, polychromatic, Band: 0,12 μm, central wavelength: 530 nm
- Collimator: off-axis
 parabolic mirror (f=760
 mm)

• ...

Incident plane wave from the collimator

CSIG

- 24-order/ 48-order
- High frequency value: 511 mm⁻¹
- Distance to the detector: 31,4 mm

The detector: CCD e2v 204 (Euclid-VIS evaluation version)

- Pixel pitch: 12 µm
- size: 1k x 4k pix, 12mmx48mm
- Operation: Full frame
- Wavelength: 550-900 nm
- QE > 90%, T=153 K

Local procedure

- Implementation of the multiplexing pixel MTF measurement
- Idea: scan the pattern through the FPA
- Result: reconstruction of response of each pixel

- Status: at the moment, the procedure has been validated by simulations
- Application on the CCD-273: deplacement amplitude 380 μm, deplacement pitch: 1 μm for 1/10 resolution. Then 144400 acquisitions and data storage of 2 TeraOctet are required !

- Improvement of the test procedures and the acquisition
- Improvement of the data processing techniques
- Implementation of the multiplexing pixel MTF measurement
- Development of the final test bench

- Thank U for your attention
- Questions ?

Irfu Impacts of the intrapixel variations

- IPSV can be a source of errors
 - Undersampled instruments
 - High-quality imagery
 - Precise and accurate photometry
 - Precise astrometry
- For measurements with high constraints
 → Evaluation of the IPSV is necessary

Irfu The test bench: the detector

- Euclid CCD evaluation-version
 - Pixel pitch: 12 µm
 - Number of pixels: 1k x 4k
 - Image area: 12mmx48mm
 - Operation: Full frame
 - 2 Outputs
 - Wavelength: 550-900 nm
 - Quantum efficiency: > 90%

Euclid e2v CCD-204

• The CCD is cooled at 153 K in the cryostat

Irfu The test bench: the procedure

- The optical setup
 - Projection of a periodic intensity pattern onto the detector
 - Self-imaging properties (The talbot effect)
 - Continuously-Self Imaging Grating (CSIG)

Irfu The test bench: the Talbot effect

 The Talbot effect explanation 2π 4π HenryTalbot а $\frac{\lambda}{-}$ +D a Ζ $4d^2$ $z = \frac{2d^2}{\lambda}$ Z = λ ONERA THE FRENCH AEROSPACE LAB

- C. Ketchazo - NDIP, 30 June - 4 July, 2014 . Tours

Irfu The test bench: the Talbot effect

June, 2014.

- The talbot effect explanation
 - Many holes, displacement of the screen

