

SCT SiPM-Camera Development for CTA

Presentation on behalf of the SCT-camera working group

Nepomuk Otte

School of Physics & Center for Relativistic Astrophysics Georgia Institute of Technology

Eckart Lorenz

* 7.6.1938

† 21.6.2014

The Very-High Energy Gamma-Ray Universe

- Understanding the origin of cosmic rays and their role in the Universe.
- Understanding the nature and variety of particle acceleration around black holes.
- Searching for the ultimate nature of matter and physics beyond the Standard Model.

Gamma-Ray Instruments

Satellites Georgia

Cherenkov telescopes

Water Cherenkov detectors

Nepomuk Otte

Imaging Atmospheric Cherenkov Technique

A 1 TeV gamma ray produces 150 Cherenkov photons per m² on the ground

Cherenkov signal contaminated by night sky background photons

Light pool is 100,000 m² = effective detection area for existing Cherenkov telescopes

Imaging Technique

Photon Detector Requirements for IACTs

Fishing the faint Cherenkov signal (lasting a few ns) out of the sea of night sky background:

- Fast photon detectors
- Sensitive range ~280 nm ... ~600 nm
- Count rate capability of 1 phe / µs / mm²
- Dynamic range < 100 phe / mm²
- Mechanically robust / insensitive to accidental exposure to sun / insensitive to magnetic fields
- Small variations in performance between devices
- Low cost

Silicon photomultipliers and classical photomultipliers

Observing in bright Moon Light

full moon @ VERITAS 2009

40% increase in duty cycle Increased threshold but no loss in sensitivity at high energies

Standard observing mode for FACT, MAGIC II, and VERITAS

Nepomuk Otte

FACT: The First G-APD Cherenkov Telescope

- 1595 SiPMs
- 3x3 mm² from Hamamatsu
- Solid PMMA light concentrators
- Readout with DRS4 @ 2GS/s
- 200 MHz bandwidth

arXiv:1304.1710

Cherenkov Telescope Array

- Tenfold improvement in sensitivity
- Three different telescope sizes
- ~100 telescopes per site

Imaging Atmospheric Cherenkov Technique

Cherenkov photon density on ground for a 50 GeV gamma ray

A 1 TeV gamma ray produces 150 Cherenkov photons per m² on the ground

Cherenkov signal contaminated by night sky background photons

Light pool is 100,000 m² = effective detection area for existing Cherenkov telescopes

CTA detects gamma-rays that fall within an area that is fifty times larger than the light pool

Cherenkov Telescope Array Design

Low energies

Energy threshold 20-30 GeV 23 m diameter 4 telescopes

Medium energies

100 GeV – 10 TeV 9.5 to 12 m diameter 25 single-mirror telescopes 24 dual-mirror telescopes

High energies

10 km² area at few TeV 4 m diameter up to 70 telescopes

Camera Concepts for CTA a Selection

42% efficiency at 400 nm

Same PMT for LST and MST telescopes

Different Readout concepts:

Dragon camera uses DRS4

- SCA with 4096 cells
- 1GS/s sampling
- External ADC (12bit)
- Bandwidth 300MHz

NectarCAM uses NECTAr

- SCA with 1024 cells
- Integrated digitizer 500MS/s to 3.2GS/s
- 11.3 bit effective resolution
- Bandwidth 400MHz
- 2% deadtime for 9kHz readout rate

See poster on SiPM camera for single mirror SST telescopes by Matthieu Heller And more developments ongoing: Flashcam, CHEC-S and -M, DigiCam ...

The Midsize Schwarzschild-Couder Telescope

- Extending CTA Baseline array with ~25 telescopes
- Factor two gain in sensitivity

lec

Main reason for SCT development is large field of view with little loss in optical performance at edges

SCT Camera

Photon Detector for the Prototype

Hamamatsu (S12642-0404PA-50):

- 3x3 mm² SiPMs in 4x4 matrix
- TSV technology (reduced dead space)
- 50 µm cells

At 3 V above breakdown

- Peak PDE @ 450 nm is ~38%
- Optical cross talk 48%
- Dark Rate 200 kHz/mm² (5 times below NSB)

Choice for prototype but we continue to evaluate devices before we have to make a choice for the final array

Devices are rapidly improving

Figure of Merit

Obvious goal: Maximizing collection efficiency of Cherenkov light: 21%

Evaluating the full impact of a photon detector on performance of an IACT requires end to end simulations

Received and tested full SiPM Order

415 TSV tiles, 1.45 \$ / mm² sensitive area (<\$1 for larger quantities)

Nepomuk Otte

SiPM Carrier Boards

- A camera module is split into quadrants
- Each quadrant hosts four tiles reflow soldered on one PCB
- 4 SiPMs are connected in parallel to form one imaging pixel in readout
- Micro-coax cables connect to the front end electronic
- Each board has a thermistor to monitor the temperature

Quadrant Testing

Test connectivity of each 3x3 mm² SiPM

Automatically scans all 64 SiPMs on one board.

Temperature stabilized Sensor Module

Temperature Stabilization

SiPM Signal Processing

Want short signals (<10 nsFWHM) to reduce contamination from background photons

Preamplifier

Low power preamplifier ~10 mW

Signal after Shaping

Normalized Average Trace

Digitization with TARGET 7

ASIC originally designed for HEP adapted for IACTs

- Application-specific integrated circuit featuring switched capacitor array analog sampling followed by self-triggered digitization
- Designed by Gary Varner (U Hawaii)
- 1.0 or 0.5 GSa/sec analog sampling per channel
- ~380 MHz analog bandwidth
- 16 channels per chip
- 16,384 cells of analog memory per channel
- Self triggering with analog sum trigger (sum of 4 channels)
- LVDS trigger output
- Currently characterizing version 7 (to be used for prototype SCT)
- ~10 bits effective (1.9 V range, 2 mV noise)

Summary & Conclusions

- The developed SCT camera is very compact, modular and highly integrated
- Cost effective approach ~\$60 per channel (\$30 for SiPMs) -> photon detectors are still the cost drivers
- Sensors are temperature stabilized to < 1° C
- We use Hamamatsu MPPCs for the prototype (\$1.45/mm²), Cherenkov detection efficiency of 21%
- There is still a lot of room for improvement: higher Cherenkov detection efficiency, reduced sensitivity > 600 nm, lower costs

We gratefully acknowledge support from the agencies and organizations listed under Funding Agencies at this website: http://www.cta-observatory.org/.

Backup

9 Candidate Sites

South:

- Cerro Armazones, Atacama, Chile (ESO)
- Aar, Namibia: private farmland 1600 masl, 120 km west of Luderitz
- Khomas Highland, Namibia
- El Leoncito, Argentina
- San Antonio de los Cobres, Argentina (now ruled out)
- North:
 - Metero Crater, Arizona, United States
 - Yavapai Ranch, Arizona, United State
 - San Pedro Martir, Mexico
 - Teide, Tenerife, Canary Islands

