7th International Conference on New Developments In Photodetection

Tours, France, June 30th to July 4th 2014

Micro-Channel Plates And Vacuum Detectors

NDIP

Thierry Gys (CERN/PH-DT)

NDIP Review Talk - 30 June 2014

- Much more has been and is taking place than what can be covered in 45 minutes!
- This (partially historical) review is actually a mix between an overview, a tutorial and a highlight from the viewpoint of a modest MCP user
- The selection criteria were a combination of
 - the speaker's past and current activities and interests
 - those MCP-related developments coming from relatively old, new and near-future R&D and experiment projects
 - topics which are generally covered in other oral or poster presentations during this
 Conference
 - topics the illustrations of which were easily accessible, directly via authors, publications and web sites

- History the channel electron multiplier
- From large-size single channels to micro-channel plates
- Gen II image intensifiers
- Applications in scintillating fibre tracker detectors
- Re-discovering the MCP-PMT for fast timing
- Applications in time-of-flight and particle identification and related recent developments
- Conclusions and perspectives

History – the channel electron multiplier (CEM)

Further developed in 1960's

- Oschepkov et al.
 - No central electrode
 - TiO₂+MgO
- Heroux and Hinteregger
 - SnO+Sb-coated glass
- Goodrich and Wiley
 - "They may either be made of a conducting coating on an insulating base or they may consist of the surface of a material with the proper volume resistivity for convenient operation"

Rev. Sci. Instr. 32 (1961) 846

Rev. Sci. Instr. 31

(1960) 280

channel; 4) electron collector; 5) instrument for recording the output current; Φ_0) primary radia-

tion which produces electron emission from the

US Patent 1,969,399

internal surface.

History – the CEM (2)

•

- Production of resistive surfaces in Pb-glass by high T reduction in hydrogen
 - See K. Blodgett J. Am. Ceram. Soc. 34,1 (1951) 14
- The same technology that produced optical fibres and fibre optic bundles, with a slight change in manufacturing, allowed the production of micro-channel plates
- Manufacturing steps
 - Hollow tube of non-etchable glass
 - Core of etchable glass
 - Heated and drawn (0.8mm ø)
 - Bundled to hexagon rod
 - Drawn again
 - Fused and sliced
 - Polished and etched
 - Heated under H₂ and "electroded" (NiCr)
 - Pre-conditioning through electron scrubbing
- Glass surface resistivities 10^7 to $10^{13} \ \Omega/\Box$

VALVO

NIM162 (1979) 587

Micro-channel plates

- Geometry
 - d~6-25µm ٠
 - L~400-1000µm ٠
 - α =L/d~40-100, defines gain ٠
 - OAR~55-65% ٠
- Straight channel •
 - Typical gain 10³-10⁴ •
 - **IFB** limited •
 - **Negative exponential PHS** \bullet
- **Curved channel** •
 - Space-charge limited dynamic equilibrium •
 - **Quasi Gaussian PHS** •
 - Difficult to bend if small-sized •
- Chevron
 - Typical gain 10⁶-10⁷
 - Gain \div d for fixed V/ α
 - PHS

NIM162

- Driving market
 - Night vision
 - Military applications
- Typical structure
 - Optical input window
 - Photocathode
 - MCP (chevron)
 - Phosphor screen
 - Optical fibre bundle
 - CCD readout

http://www.microscopyu.com /print/articles/digitalimaging/ digitalintro-print.html

Gen I

Gen II

- Image features
 - High gain
 - No pin-cushion distortion (Gen I)
- Spatial resolution (and time)
 - Photon energy
 - Tube gaps
- Halos (and time tails)
 - Back-scattering
 - Tube gaps
 - PC-MCPin gap can be as small as 120µm
- End-spoiling
 - Increased spatial resolution
 - ... to some extent (lens effect)
 - What about timing effects?

Acta Electronica 20,4 (1977) 369

 $\begin{array}{c}
60V \\
\hline
0.1V \\
\hline
d
\end{array}$

J. Vac. Sci. Tech. B 19 (2001) 843

NDIP Review Talk - 30 June 2014

V(E)

- UA2 tracker upgrade
 - Search of e- with p_T~10-30GeV/c as a signature for top quark production
 - Cascade of 3 image intensifiers
 - 1st stage is Gen I
 - Good coverage
 - De-magnification required to match Gen II size
 - 2nd stage is Gen II
 - High gain
 - 3rd stage is Gen I
 - De-magnification required to match CCD size

NIMA344 (1994) 143

- CHORUS
 - Search for v_{μ} - v_{τ} oscillations
 - Fibre tracker restricts search for vertex location
 ν_τ, N -> τ-, X in bulk emulsion

NIMA289 (1990) 342 3 2 1

- WA84
 - Beauty search with scifi microvertex detector

Re-discovering the MCP-PMT for fast timing

- Some interesting features
 - Square shapes
 - Better overall coverage
 - Single-photon sensitive
 - High gain
 - Collection efficiency ~ 60%
 - Compact, high E field
 - Small TTS
 - Works in large (axial) magnetic fields
 - Good rate capability (the smaller d the better)
 - Position-sensitive
 - Appropriate anode segmentation

Hamamatsu

NIMA 695 (2012) 68

- Photo-electron back-scattering
 - Tails in spatial and timing distributions
 - Spatially
 - Worst case: elastic scattering @ 45°
 - Range twice PC/MCPin gap
 - Timing
 - Worst case: elastic scattering @ 90°
 - Range twice transit time PC/MCPin

- Secondary electrons spread when traveling from MCPout to anode
- May hit more than one anode pad → Charge sharing
- May improve spatial resolution but degrade time resolution

Fraction of the charge detected by left pad as a function of light spot position (red laser)

Y

e

Slices at equal charge sharing for red and blue laser at pad boundary Resolution limited by photoelectron energy.

 $\int \frac{54}{x} [mm]$

50

50

52

54

x[mm]

52

- Narrow amplification channel and proximity focusing electron optics allow operation in magnetic field (~axial direction)
- Amplification depends on magnetic field strength and direction
- Effects of charge sharing and photoelectron backscattering on position resolution are strongly reduced while effects on timing remain

NIMA595 (2008) 173

NDIP Review Talk - 30 June 2014

T. Gys - MCPs and Vacuum Detectors

- During the amplification process
 - Atoms of residual gas get ionized and/or desorbed
 - Travel back towards the photocathode and produce secondary pulse
- Ion bombardment damages the photocathode reducing QE
- Atoms may react with and degrade the photocathode
- Overall gain reduction also seen

- Improve vacuum quality
- Improve MCP scrubbing
- Make more robust photocathodes
- Investigate new thin-film technologies
- Investigate alternative MCP materials
 - Borosilicate, Alumina, Silicon
- Implement ion barrier film
 - 5-10nm Al₂O₃
 - On MCPin with 40% reduction of collection efficiency
 - Between MCPs
- Seal anode region from PC region

- Developed @ BINP for FARICH concept ٠
 - **Possible applications** •
 - Super c- τ factory (Novosibirsk)
 - ALICE •
 - •
 - PANDA forward RICH
- DCR ranges \bullet
 - Na2KSb(Cs)+Cs3Sb: 50-100 kHz/cm² •
 - Na₂KSb(Cs)+Cs: 5 kHz/cm² •
 - Na₂KSb(Cs): 0.5 kHz/cm² •
 - Na₂KSb: <0.5 kHz/cm² •
- Test operating parameters •
 - Counting rate 2-10MHz/cm² •
 - Gain 10⁶ •
- Recoverable gain change

2011 JINST 6 C12026

See talk of O. Siegmund at this Conference

- Three-step deposition process
 - Resistive layer
 - Secondary emission layer
 - Electrode layer
- Optimization of MCP resistance and SEE
 - Independently for each film
 - For a given gain, lower operating voltage
- Allow use of insulating materials other than Pb-glass
- Initiated by the LAPPD Collaboration

Arradiance

NIMA607 (2009) 81–84

Amorphous Si-based \rightarrow See talk of F. Andrea at this Conference

FDIRC/FTOF

DIRC concept (BaBar) – 2D imaging

$$t_p = \frac{L_{path}}{v_g}$$
 $v_g = \frac{c}{n(\lambda) - \lambda \frac{dn}{d\lambda}}$ (group velocity)

Required various MCP-related R&D

NIMA718 (2013)

See talk of S. Hirose at this Conference

- Particle ID in Belle II
- TOP (Time-Of-Propagation)
 - Counter based on DIRC concept
 - Using linear array of MCP-PMTs to measure x coordinate and time of propagation (length of photon path)
 - Chromaticity dispersion 100ps
 - Evolved towards iTOP with focussing mirror and y coordinate

Quartz radiator
 With mirror and expansion block
 Mechanics, Quartz Bar Box (QBB)
 MCP-PMT + Readout electronics
 32 PMTs x 16ch = 512ch

100mm
456mm
100mm
456mm
100mm
16x2 MCP-PMTs
Readout electronics
16x2 MCP-PMTs
Freedout electronics
16x2 MCP-PMTs

Belle II iTOP photon detectors

Physics Procedia 37 (2012) 683

NIMA 629 (2011) 111

- MCP-PMT requirements
 - Integrated charge
 - 1.2-2.4 C/cm²/50 ab⁻¹ (5x10⁵ gain)
 - Lifetime 0.8QE
 - Enhanced multi-alkali (>28% QE at peak)
 - MCP
 - Channel ϕ 10 μ m
 - bias angle 13°
 - thickness 400µm
 - layers 2
 - Al protection layer on 2nd MCP + sealing + ALD
 - Anode channels 4×4
 - Sensitive region 64%
 - HV ~ 2500 3500 V
 - Readout: analogue sampling memory

K. Matsuoka RICH2013

- Time resolution: acceptable up to 100 ps (rms)
- T₀ jitter: acceptable up to 50 ps (rms)
- MCP-PMT signal is read out by newly developed "IRS" (Ice Radio Sampler) series of ASICs
 - Waveform sampling
 - Clear signal read out by ASIC
 - High density, multi-hit buffering 512ch / module, 30kHz trigger rate
 - Clock jitter measured with test pulse is about 20ps.

K. Inami RICH2013

See talk of A. Lehmann at this Conference

- Interaction rate
 - cycle average: ~10 MHz
 - max. average: ~20 MHz
- Require K/π separation up to 4GeV/c
- Disc DIRC
 - Very limited space
 - B field 1-2T
 - ~ 3 "Cherenkov emitting" tracks per interaction
 - Triggerless operation
 - 1 MeV n-equivalent fluence >2.10¹¹ neq/cm²

O. Merle RICH2013

PANDA Disc DIRC

- MCP-PMT requirements
 - Integrated charge ~ 5.6C/cm²
 - Rate ~ 225kHz/cm²
 - Bfield 1-2T
 - Segmentation 3x100 on 2" sq. tube
- ASIC candidate
 - TOF-PET Rolo et al. 2013 JINST 8 C02050

O. Merle RICH2013

NDIP Review Talk - 30 June 2014

PANDA Barrel DIRC

- DIRC concept
- Design similar to BELLE II iTOP
- MCP-PMT requirements
 - Single photon detection
 - Spatial resolution ~ few mm
 - Fast rise time
 - Operation in 1 T field
 - High-rate capability ~0.2 MHz/cm²
 - Long lifetime: 0.5 C/cm² per year at 10⁶ gain
 - Photonis 8x8

M. Hoek RICH2013

- Moderate MCP gain changes
- Decrease of DCR

A. Lehmann RICH2013

• Big improvement for ALD-processed MCPs

NIMA 695 (2012) 68

- DAQ system based on TRBv3 board (developed at GSI)
 - High-resolution TDC (<10 ps) based on FPGAs
 - LVDS input signals
 - Precise timing
 - Amplitude information (ToT)
- Compare different technologies
 - ASIC: NINO chip (ALICE TOF)
 - FPGA: PADIWA (GSI)
 - From beam tests TTS O(50ps) achieved

M. Hoek RICH2013

See talk of L. Castillo García at this Conference

- TORCH (Time Of internally Reflected CHerenkov light) is a possible solution for low-momentum particle ID in LHCb
- Largely inspired by Babar DIRC and iTOP concepts of Belle II
- Want positive identification of kaons in region below their threshold for producing light in the C₄F₁₀ gas of RICH-1, i.e. p < 10 GeV/c
- ΔTOF (π-K) = ~35 ps at 10 GeV/c over a distance of ~ 10 m
 → aim for ~15 ps resolution per track
- ERC-funded Project (ERC-2011-AdG, 291175-TORCH)

NDIP Review Talk - 30 June 2014

NIMA639 (2011) 173

TORCH reconstruction and photon detector requirements

- Reconstruction
 - Measure angles θ_x , θ_z of photon trajectory with 1mrad precision to reconstruct photon path length
 - Require appropriate focussing optics at periphery and corresponding coarse (θ_x) and fine (θ_z) segmentation of photon detectors
- θ_z θ_z θ_z h θ_z h θ_z h θ_z h θ_z θ_z θ

- MCP-PMT requirements
 - Segmentation 8x128 ______
 (~6.4mmx0.4mm for a 2" tube)
 - Typical gain 100fC (6x10⁵)
 - TTS 50ps for single photons (including electronics)
 - 100 tracks per event, 30 detected photons per track every 25ns
 => 1-10MHz/cm² detected photon rate
 - => 1-10C/cm² per year

TORCH photon detectors – commercial and custom devices

Photonis

- Commercial MCP-PMTs
 - The closest candidates
 - Planacon 8x8 5.9 mm/6.5 mm in size/pitch
 - Planacon 32x32 1.1 mm/1.6 mm in size/pitch
 - Measured TTS for single photon
 - 38ps with single-channel electronics
 - ≤90ps with NINO/HPTDC (w/o time walk and non-linearity corrections)
 - Fine segmentation \rightarrow not OK
- Custom MCP-PMTs
 - Dedicated R&D programme subdivided in three phases

 - Circular devices with required segmentation
 - Square devices with extended lifetime and required

Photek

L. Castillo García et al.

ICATPP2013

NIMA732

(2013) 388

- MCP concept is old but technology is still evolving and improving
- Most spectacular progress is on lifetime to be confirmed long-term on large quantities
- Trend towards finer anode spatial segmentation
- Readout electronics is a challenge
 - High channel count rate
 - High speed
 - High SNR
- Cost aspects!
- Some design guidelines
 - Survey of existing technologies
 - Collaboration with industry: as much as possible, try to combine/match requirements with industrial standards
 - Development of new photon detectors and their associated readout (front-end) electronics should be carried out in parallel but not independently

Note: apologies for any omission!

- @ Session 6 High Energy Physics
 - L. Burmistrov, "Cherenkov detector for proton Flux Measurement (CpFM)"

• @ Session 10 – Cherenkov Detectors

- S. Hirose, "Development of the MCP-PMT for the Belle II TOP Counter"
- L. Castillo García, "MCP photon detectors studies for the TORCH detector"
- @ Session 11 Innovative Photodetectors
 - L. Hiirvonen, "Sub-exposure-time time resolution in wide-field time-correlated single photon counting imaging"

- @ Session 12 MCPs
 - Q. Sen "The Status of MCP-PMT R&D in China"
 - O. Siegmund, "Application of Atomic Layer Deposited Microchannel Plates to Imaging Photodetectors with High Time Resolution"
 - F. Andrea et al., "Latest results about the performances of amorphous silicon-based microchannel plate"
 - A. Lehmann et al., "Breakthrough in the Lifetime of Microchannel-Plate PMTs"
 - V. Yurevich, "Development and study of picosecond start and trigger detector for high-energy heavy ion experiments"
- @ Session 16 Readout Electronics
 - J. Lapington et al., "The capacitive division image readout; an imaging technique combining high time and spatial resolution"
 - M. Fiorini et al., "CLARO-CMOS: a fast, low power and radiation-hard front-end ASIC for single-photon counting in 0.35 micron CMOS technology"

• @ Poster Session #2

- M. Minot et al., "Pilot Production & Commercialization of LAPPD™"
- L. Giudicotti, "Gain saturation in microchannel plate detectors"
- A. Tremsin, "Optimization of High Count Rate Photon Counting Detector with Microchannel Plates and Quad Timepix readout"

• @ Poster Session #3

• S. Leach et al., "Optimising image resolution for photon-counting detectors using adaptive pulse processing"

Solid materials (usually semiconductors)

Multi-step process:

1. absorbed γ 's impart energy to electrons (e) in the material; If $E_{\gamma} > E_{g}$, electrons are lifted to conductance band.

→ In a Si-photodiode, these electrons can create a photocurrent. → Photon detected by Internal Photoeffect.

However, if the detection method requires extraction of the electron, 2 more steps must be accomplished:

- 2. energized e's diffuse through the material, losing part of their energy (~random walk) due to electron-phonon scattering. $\Delta E \sim 0.05 \text{ eV}$ per collision. Free path between 2 collisions $\lambda_f \sim 2.5$ 5 nm \rightarrow escape depth $\lambda_e \sim$ some tens of nm.
- 3. only e's reaching the surface with sufficient excess energy escape from it → External Photoeffect

$$E_{\gamma} = h \nu > W_{ph} = E_G + E_A$$

NDIP Review Talk - 30 June 2014

Light absorption in photocathode

 $N = N_0 \cdot exp(-\alpha d)$ $\lambda_{A} = 1/\alpha$ Red light ($\lambda \approx 600$ nm) $\alpha \approx 1.5 \cdot 10^5 \text{ cm}^{-1}$ $\lambda_A \approx 60 \text{ nm}$ Blue light ($\lambda \approx 400$ nm) $\alpha \approx 7 \cdot 10^5 \text{ cm}^{-1}$ $\lambda_{\rm A} \approx 15 \text{ nm}$

0.4

Blue light is stronger absorbed than red light !

→ Make semitransparent photocathode just as thick as necessary!

2.6

hv (eV)

Opaque photocathode

(External) QE of typical semitransparent photo-cathodes

Bialkali: SbKCs, SbRbCs Multialkali: SbNa₂KCs (alkali metals have low work function)

2 types of losses:

• Fresnel reflection at interface air/window and window/photocathode

 $\begin{array}{l} R_{Fresnel} = (n - 1)^2 \ / \ (n + 1)^2 \ n = refractive \ index \ (wavelength \ dependent!) \\ n_{glass} \simeq 1.5 \ R_{Fresnel} = 0.04 \ (per \ interface) \end{array}$

• Bulk absorption due to impurities or intrinsic cut-off limit. Absorption is proportional to window thickness

Schott

