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Review disclaimer 
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• Much more has been and is taking place than what can be covered in 45 minutes! 

 

• This (partially historical) review is actually a mix between an overview, a tutorial and a 

highlight from the viewpoint of a modest MCP user 

 

• The selection criteria were a combination of 

• the speaker’s past and current activities and interests 

• those MCP-related developments coming from relatively old, new and near-future R&D and 

experiment projects 

• topics which are generally covered in other oral or poster presentations during this 

Conference 

• topics the illustrations of which were easily accessible, directly via authors, publications and 

web sites   



Outline 
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• History – the channel electron multiplier 

 

• From large-size single channels to micro-channel plates 

 

• Gen II image intensifiers 

 

• Applications in scintillating fibre tracker detectors 

 

• Re-discovering the MCP-PMT for fast timing 

 

• Applications in time-of-flight and particle identification and related recent developments 

 

• Conclusions and perspectives    



History – the channel electron multiplier (CEM) 

• Combination of secondary emissive dynode and 
resistive chain 
 

• First proposed in 1930 by Farnsworth 
• Modulated electron stream 
• Hollow resistor 
• Central electrode coated with Th (45eV/e-) 

or Ba (33eV/e-) 
• Evaporate on resistor 
• Increase e- vt 

 

• Linear up to space charge effects 

 
• Further developed in 1960’s 

• Oschepkov et al. 
• No central electrode 
• TiO2+MgO 

• Heroux and Hinteregger 
• SnO+Sb-coated glass 

• Goodrich and Wiley 
• “They may either be made of a conducting 

coating on an insulating base or they may consist 
of the surface of a material with the proper 
volume resistivity for convenient operation” 
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Rev. Sci. Instr. 32 
(1961) 846  

Rev. Sci. Instr. 31 
(1960) 280 

US Patent 
1,969,399 

Instr. and Exp. Tech. 4 
(1960) 611  



History – the CEM (2) 

• Hollow tube replace strips, no B field 
• Parallel array possible 
• ø range 0.04-0.004” 

 

• Typical secondary emitters 
• AgMgO (Cs) GaP(O) e>10 
• Initial e- emission energy of a few eV 

 
• Achieve high gains up to 108 

 
• Ion feed-back limitations => curved channels 
 
• Time resolution ~500ps 

• Measurement of short lifetimes 
of nuclear energy states 
 

• Count rate up to 107 

 
• Lifetime up to 5000GCounts 
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Rev. Sci. Instr. 33 
(1962) 761 

Channeltron 
(Burle) 

NIMA99 
(1972) 445 

SPECS GmbH  



CEM applications and commercial products 
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Rev. Sci. Instr. 40,2 (1969) 311  

• Numerous applications in space, mass 
spectrometry, … 
• E.g “A secondary standard vacuum ultraviolet 

detector” by M.C. Johnson (Bendix) 

 

Channeltron 
(Burle) 

Amptektron 
(Amptek) 



From large-size single channels to micro-channel plates 
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• Production of resistive surfaces in Pb-glass by 
high T reduction in hydrogen 
• See K. Blodgett J. Am. Ceram. Soc. 34,1 

(1951) 14 
 

• The same technology that produced optical 
fibres and fibre optic bundles, with a slight 
change in manufacturing, allowed the 
production of micro-channel plates 
 

• Manufacturing steps 
• Hollow tube of non-etchable glass 
• Core of etchable glass 
• Heated and drawn (0.8mm ø) 
• Bundled to hexagon rod 
• Drawn again 
• Fused and sliced 
• Polished and etched 
• Heated under H2 and “electroded” (NiCr) 
• Pre-conditioning  through electron scrubbing 

 

• Glass surface resistivities 107 to 1013 Ω/□ 

NIM162 
(1979) 587 

VALVO 



Micro-channel plates 
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• Geometry 
• d~6-25mm 
• L~400-1000mm 
• a=L/d~40-100, defines gain 
• OAR~55-65% 

 
• Straight channel 

• Typical gain 103-104 

• IFB limited 
• Negative exponential PHS 

 
• Curved channel 

• Space-charge limited – dynamic equilibrium 
• Quasi Gaussian PHS 
• Difficult to bend if small-sized 

 

• Chevron 
• Typical gain 106-107 

• Gain ÷ d for fixed V/a 

• PHS 
 

NIM162 
(1979) 587 



Generation II image intensifier tubes 
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• Driving market 
• Night vision 
• Military applications 

 

• Typical structure 
• Optical input window 
• Photocathode 
• MCP (chevron) 
• Phosphor screen 
• Optical fibre bundle 
• CCD readout 

 

http://www.microscopyu.com 
/print/articles/digitalimaging/
digitalintro-print.html 



Generation II image intensifier tubes 
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• Image features 
• High gain 
• No pin-cushion 

distortion (Gen I) 
 

• Spatial resolution (and time) 
• Photon energy 
• Tube gaps 

 

• Halos (and time tails) 
• Back-scattering 
• Tube gaps 

• PC-MCPin gap can be as small as 120mm 

 

• End-spoiling 
• Increased spatial resolution 
• … to some extent (lens effect) 
• What about timing effects? 

Acta Electronica 20,4 
(1977) 369 

J. Vac. Sci. Tech. B 19 
(2001) 843 

Gen I 
 
 
 
 
 
 
Gen II 



Scintillating fibre trackers 
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• UA2 tracker upgrade 
• Search of e- with pT~10-30GeV/c 

as a signature for top quark production 
 

• Cascade of 3 image intensifiers 
• 1st stage is Gen I 

• Good coverage 
• De-magnification required 

to match Gen II size 

• 2nd stage is Gen II 
• High gain 

• 3rd stage is Gen I 
• De-magnification required 

to match CCD size 

 

• CHORUS 
• Search for nm-nt oscillations 
• Fibre tracker restricts search for vertex location 

nt,N -> t-,X in bulk emulsion 
 

• WA84 
• Beauty search with scifi microvertex detector 

NIMA265 
(1988) 33 

NIMA344 
(1994) 143 

NIMA289 
(1990) 342 



Re-discovering the MCP-PMT for fast timing 

 

• Some interesting features 
• Square shapes 

• Better overall coverage 
 

• Single-photon sensitive 
 

• High gain 
 

• Collection efficiency ~ 60% 
 

• Compact, high E field 
• Small TTS 
• Works in large (axial) magnetic fields 
• Good rate capability 

(the smaller d the better) 
 

• Position-sensitive 
• Appropriate anode segmentation 
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Photonis 

Hamamatsu 

NIMA 695 
(2012) 68 



MCP-PMT spatial and timing effects 

 

Typical single photon timing distribution with narrow 
main peak (s ~ 40 ps) and contribution from 
photoelectron back-scattering. 

Pulse height distribution 

Timing distribution 
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NIMA595 
(2008) 169 

• Photo-electron back-scattering 
• Tails in spatial and timing distributions 

 
• Spatially 

• Worst case: elastic scattering @ 45° 
• Range twice PC/MCPin gap 

 
• Timing 

• Worst case: elastic scattering @ 90° 
• Range twice transit time PC/MCPin 



MCP-PMT charge sharing (and timing) 

• Secondary electrons spread when traveling 
from MCPout to anode 
 

• May hit more than one anode pad → Charge 
sharing 
 

• May improve spatial resolution but degrade 
time resolution 

Fraction of the charge detected by left pad as 
a function of light spot position (red laser) 

Slices at equal charge sharing for red and blue laser at pad boundary 
Resolution limited by photoelectron energy. 

RED 
LASER 

BLUE 
LASER 
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NIMA595 
(2008) 169 



MCP-PMT in large B fields 

NDIP Review Talk - 30 June 2014 T. Gys - MCPs and Vacuum Detectors  15 

NIMA595 
(2008) 173 

• Narrow amplification channel and proximity 
focusing electron optics allow operation in 
magnetic field (~axial direction) 
 

• Amplification depends on magnetic field 
strength and direction 
 

• Effects of charge sharing and photoelectron 
backscattering on position resolution are 
strongly reduced while effects on timing remain 



MCP-PMT ion feedback and ageing 

 

• During the amplification process 
• Atoms of residual gas get ionized and/or desorbed 
• Travel back towards the photocathode and 

produce secondary pulse 
 

• Ion bombardment damages the photocathode 
reducing QE 
 

• Atoms may react with and degrade the 
photocathode 
 

• Overall gain reduction also seen 
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MCP-PMT ion feedback and ageing - possible strategies 

 

• Improve vacuum quality 
 

• Improve MCP scrubbing 
 

• Make more robust photocathodes 
 

• Investigate new thin-film technologies 
 

• Investigate alternative MCP materials 
• Borosilicate, Alumina, Silicon 

 
• Implement ion barrier film 

• 5-10nm Al2O3 

• On MCPin with 40% reduction of collection efficiency 
• Between MCPs 

 

• Seal anode region from PC region 
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Robust photocathodes (combined with improved scrubbing) 
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• Developed @ BINP for FARICH concept 
• Possible applications 

• Super c-t factory (Novosibirsk) 
• ALICE 
• PANDA forward RICH 

 
• DCR ranges 

• Na2KSb(Cs)+Cs3Sb: 50-100 kHz/cm2 

• Na2KSb(Cs)+Cs: 5 kHz/cm2 

• Na2KSb(Cs): 0.5 kHz/cm2 

• Na2KSb: <0.5 kHz/cm2 

 
• Test operating parameters 

• Counting rate 2-10MHz/cm2 
• Gain 106 

 
• Recoverable gain change 

2011 JINST 6 C12026 



Atomic layer deposition (ALD) 
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• Three-step deposition process 
• Resistive layer 
• Secondary emission layer 
• Electrode layer 

 
• Optimization of MCP resistance and SEE 

• Independently for each film 
• For a given gain, lower operating voltage 

 
• Allow use of insulating materials other than Pb-glass 

 
• Initiated by the LAPPD Collaboration 

NIMA607 
(2009) 81–84 

Arradiance 

See talk of O. Siegmund at this Conference 



Other material developments 
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• Borosilicate → 
 

• In combination with ALD 
• “Micro capillary array” 
• Large area 
• Improved process 

 

 
 
 

• Anodic alumina 
 
 
 
 
 
 
 

• Amorphous Si-based → 

NIMA639 
(2011) 165 

NIMA695 
(2012) 168 

Nucl. Phys. B (Proc. Suppl.) 125 
(2003) 394 

NIMA567,1 (2006) 290 

See talk of F. Andrea at this Conference 

See talk of O. Siegmund at this Conference 



FDIRC/FTOF 
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DIRC concept (BaBar) – 2D imaging 

Focusing DIRC with chromatic correction 
(SuperB) uses measured time of 
propagation to correct chromatic error 

 velocity)(group
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NIMA718 (2013) 

Required various MCP-related R&D 



Belle II iTOP 

 

• Particle ID in Belle II 
 

• TOP (Time-Of-Propagation) 
• Counter based on DIRC 

concept 
 

• Using linear array of MCP-
PMTs to measure x 
coordinate and time of 
propagation (length of 
photon path) 
 

• Chromaticity dispersion 
100ps 
 

• Evolved towards iTOP with 
focussing mirror and y 
coordinate 
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K. Inami RICH2013 

NDIP Review Talk - 30 June 2014 

See talk of S. Hirose at this Conference 



Belle II iTOP photon detectors 
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Physics Procedia 37 ( 2012 ) 683 NIMA 629 (2011) 111  

• MCP-PMT requirements 
• Integrated charge 

• 1.2-2.4 C/cm2/50 ab–1 

(5x105 gain) 
• Lifetime 0.8QE 

 

• Enhanced multi-alkali 
(>28% QE at peak) 
 

• MCP 
• Channel φ 10μm 
• bias angle 13° 
• thickness 400μm 
• layers 2 

 

• Al protection layer on 2nd MCP + 
sealing + ALD 
 

• Anode channels 4×4 
• Sensitive region 64% 
• HV ~ 2500 – 3500 V 
• Readout: analogue sampling 

memory 

 

K. Matsuoka RICH2013 



Belle II iTOP readout electronics 
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• Time resolution: acceptable up to 100 ps 
(rms) 
 

• T0 jitter: acceptable up to 50 ps (rms) 
 
 

• MCP-PMT signal is read out by newly 
developed “IRS” (Ice Radio Sampler) series 
of ASICs 
• Waveform sampling 
• Clear signal read out by ASIC 
• High density, multi-hit buffering 512ch / 

module, 30kHz trigger rate  
• Clock jitter measured with test pulse is 

about 20ps.  

 
K. Inami 
RICH2013 



Panda @ FAIR 
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• Interaction rate 
• cycle average: ~10 MHz 
• max. average: ~20 MHz 

 

• Require K/p separation up to 
4GeV/c 
 

• Disc DIRC 
• Very limited space 
• B field 1-2T 
• ~ 3 "Cherenkov emitting“ tracks 

per interaction 
• Triggerless operation 
• 1 MeV n-equivalent fluence 

>2⋅1011 neq/cm2 

O. Merle RICH2013 

See talk of A. Lehmann at this Conference 



PANDA Disc DIRC 
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• MCP-PMT requirements 
• Integrated charge ~ 5.6C/cm2 

• Rate ~ 225kHz/cm2 

• Bfield 1-2T 
• Segmentation 3x100 on 2” sq. tube 

 
• ASIC candidate 

• TOF-PET Rolo et al. 2013 JINST 8 C02050 

O. Merle RICH2013 



PANDA Barrel DIRC 
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• DIRC concept 
 

• Design similar to BELLE II iTOP 
 

• MCP-PMT requirements 
• Single photon detection 
• Spatial resolution  ~ few mm 
• Fast rise time 
• Operation in 1 T field 
• High-rate capability    ~0.2 MHz/cm2 

• Long lifetime: 0.5 C/cm2 per year at 106 gain 
• Photonis 8x8 

 

M. Hoek RICH2013 



Panda photon detectors – evolution of lifetime 
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• Moderate MCP gain 
changes 
 

• Decrease of DCR 

A. Lehmann RICH2013 



Panda photon detectors – evolution of lifetime 
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• Big improvement for ALD-processed MCPs 

A. Lehmann RICH2013 

NIMA 695 
(2012) 68 

NIMA 718 
(2013) 535 



• DAQ system based on TRBv3 board (developed 
at GSI) 
• High-resolution TDC (<10 ps) based on FPGAs 
• LVDS input signals 
• Precise timing 
• Amplitude information (ToT) 

 
• Compare different  technologies 

• ASIC: NINO chip (ALICE TOF) 
• FPGA: PADIWA (GSI) 
• From beam tests TTS O(50ps) achieved 

 

PANDA Barrel DIRC readout electronics 
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NINO 

PADIWA 

Current feedback 
amplifier 

(THS3201) 

Pre-amplifier 
(MMIC) 

M. Hoek RICH2013 



TORCH 
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NIMA639 
(2011) 173  

• TORCH  (Time Of internally Reflected 
CHerenkov light) is a possible solution for 
low-momentum particle ID in LHCb 
 

• Largely inspired by Babar DIRC and iTOP 
concepts of Belle II 
 

• Want positive identification of kaons in 
region below their threshold for producing 
light in the C4F10 gas of RICH-1,  
i.e. p < 10 GeV/c 
 

• TOF (p-K) = ~35 ps at 10 GeV/c 
over a distance of ~ 10 m 
→ aim for ~15 ps resolution per track 
 

• ERC-funded Project 
(ERC-2011-AdG, 291175-TORCH) 

See talk of L. Castillo García at this Conference 



TORCH reconstruction and photon detector requirements 
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• Reconstruction 
• Measure angles x, z of photon 

trajectory with 1mrad precision to 
reconstruct photon path length 

 
• Require appropriate focussing optics at 

periphery and corresponding coarse (x) 
and fine (z) segmentation of photon 
detectors  

 
• MCP-PMT requirements 

• Segmentation 8x128 
(~6.4mmx0.4mm for a 2” tube) 
 

• Typical gain 100fC (6x105) 
 

• TTS 50ps for single photons (including 
electronics) 
 

• 100 tracks per event, 30 detected photons 
per track every 25ns 
=> 1-10MHz/cm2 detected photon rate 
=> 1-10C/cm2 per year 

 
 

NIMA639 
(2011) 173  



TORCH photon detectors – commercial  and custom devices 
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• Commercial MCP-PMTs 
• The closest candidates 

• Planacon 8x8 5.9 mm/6.5 mm in size/pitch 
• Planacon 32x32 1.1 mm/1.6 mm in size/pitch 

 

• Measured TTS for single photon  
• 38ps with single-channel electronics 
• ≤90ps with NINO/HPTDC (w/o time walk and 

non-linearity corrections) 
 

• Fine segmentation → not OK 
 

• Custom MCP-PMTs 
• Dedicated R&D programme subdivided in 

three phases 
• Circular devices with extended lifetime 
• Circular devices with required segmentation 
• Square devices with extended lifetime and 

required 

 

Photonis 

L. Castillo García et al. 
ICATPP2013 

Photek 

NIMA732 
(2013) 388  



Conclusions and perspectives 
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• MCP concept is old but technology is still evolving and improving 
 

• Most spectacular progress is on lifetime – to be confirmed long-term on large quantities 
 

• Trend towards finer anode spatial segmentation 
 

• Readout electronics is a challenge 
• High channel count rate 
• High speed 
• High SNR 

 

• Cost aspects! 
 

• Some design guidelines 
• Survey of existing technologies 
• Collaboration with industry: as much as possible, try to combine/match requirements with 

industrial standards 
• Development of new photon detectors and their associated readout (front-end) electronics 

should be carried out in parallel but not independently 



MCP-related talks at this Conference 
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Note: apologies for any omission! 

 

• @ Session 6 – High Energy Physics 

• L. Burmistrov, “Cherenkov detector for proton Flux Measurement (CpFM)” 

 

• @ Session 10 – Cherenkov Detectors 

• S. Hirose, “Development of the MCP-PMT for the Belle II TOP Counter” 

• L. Castillo García, “MCP photon detectors studies for the TORCH detector” 

 

• @ Session 11 – Innovative Photodetectors 

• L. Hiirvonen, “Sub-exposure-time time resolution in wide-field time-correlated single photon counting 

imaging” 

 



MCP-related talks at this Conference (2) 
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• @ Session 12 – MCPs 

• Q. Sen “The Status of MCP-PMT R&D in China” 

• O. Siegmund, “Application of Atomic Layer Deposited Microchannel Plates to Imaging Photodetectors 

with High Time Resolution” 

• F. Andrea et al., “Latest results about the performances of amorphous silicon-based microchannel plate“ 

• A. Lehmann et al., “Breakthrough in the Lifetime of Microchannel-Plate PMTs” 

• V. Yurevich, “Development and study of picosecond start and trigger detector for high-energy heavy ion 

experiments” 

 

• @ Session 16 – Readout Electronics 

• J. Lapington et al., “The capacitive division image readout; an imaging technique combining high time 

and spatial resolution” 

• M. Fiorini et al., “CLARO-CMOS: a fast, low power and radiation-hard front-end ASIC for single-photon 

counting in 0.35 micron CMOS technology” 



MCP-related posters at this Conference 
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• @ Poster Session #2 

• M. Minot et al., “Pilot Production & Commercialization of LAPPD™” 

• L. Giudicotti, “Gain saturation in microchannel plate detectors” 

• A. Tremsin, “Optimization of High Count Rate Photon Counting Detector with Microchannel Plates and 

Quad Timepix readout” 

 

• @ Poster Session #3 

• S. Leach et al., “Optimising image resolution for photon-counting detectors using adaptive pulse 

processing”   



Spare slides 
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Photoelectric effect in a vacuum photocathode 

AGph EEWhE  n

Solid materials (usually semiconductors) 

Multi-step process: 
 
1. absorbed ’s impart energy to electrons (e) in 

the material; If E > Eg, electrons are lifted to 
conductance band.  

  In a Si-photodiode, these electrons can 
create a photocurrent.  Photon detected by 
Internal Photoeffect.  

 

EA = electron  
affinity 

 
Eg = band gap 

 

2. energized e’s diffuse through the material, losing part of their energy (~random walk) due to 
electron-phonon scattering. E ~ 0.05 eV per collision. Free path between 2 collisions f ~ 2.5 
- 5 nm  escape depth e ~ some tens of nm. 

3. only e’s reaching the surface with sufficient excess energy escape from it   
  External Photoeffect 

 

 

(Photonis) 

E 
 

h 

e- 

semiconductor  vacuum 

 

 

 

 

However, if the detection method requires 
extraction of the electron, 2 more steps must be 
accomplished:  
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Light absorption in photocathodes 

 

 

e- 

 
Detector window 

PC 

 

  

e- 

Semitransparent photocathode 

Opaque photocathode 

PC 

su
b

st
ra

te
 

A = 1/a  

Red light (  600 nm) 
a  1.5 · 105 cm-1 
A  60 nm 
 
Blue light (  400 nm) 
a  7·105 cm-1 
A  15 nm 
 

0.4 

Blue light is stronger 
absorbed than red 
light ! 

Light absorption in photocathode 

 Make semitransparent photocathode just as thick as necessary!  

N = N0·exp(-ad) 

d 
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Frequently used photosensitive materials / photo-cathodes 

100                  250                 400                  550                 700                850     [nm] 

       

12.3                 4.9                   3.1                  2.24               1.76               1.45    E [eV] 

Visible Ultra Violet 
(UV) 

 

Multialkali 
NaKCsSb 

Bialkali 
K2CsSb 

GaAs 

TEA 

TMAE, 
CsI 

Infra Red 
(IR) 

 

Remember :  
E[eV]  1239/[nm] 
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Cut-off limits of window materials 

begin of arrow indicates threshold 

Almost all photosensitive materials are 
very reactive (alkali metals). Operation 
only in vacuum or extremely clean gas. 
Exception: Silicon, CsI. 
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(External) QE of typical semitransparent photo-cathodes 

Bialkali: SbKCs, SbRbCs  Multialkali: SbNa2KCs (alkali metals have low work function) 

(Hamamatsu) 

GaAsP GaAs 

CsTe 
(solar 
blind)  

Multialkali Bialkali 

Ag-O-Cs 

Photon energy Eg (eV) 

12.3  3.1  1.76  1.13 
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Optical transmission of typical window materials 

 

Schott 

2 types of losses:  

• Fresnel reflection at interface air/window and window/photocathode 

 RFresnel  = (n-1)2 / (n+1)2  n = refractive index (wavelength dependent!) 
 nglass ~ 1.5  RFresnel = 0.04 (per interface)    

• Bulk absorption due to impurities or intrinsic cut-off limit. Absorption is proportional 
to window thickness 

Optical transmission of various glass types 

T = 8% = 2·4% 
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Optical transmission of typical window / substrate materials 

Newport 
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