SiPM arrays and miniaturized readout electronics for compact imaging gamma camera

N.Dinu¹, T. Imando¹, A. Nagai¹, L. Pinot², V. Puill¹, S. Callier³, B. Janvier², C. Esnault², Y. Charon², L. Raux³, V. Vandenbussche², M-A. Verdier², L. Menard²

¹Laboratory of Linear Accelerator, IN2P3, CNRS, Orsay, France

²Laboratory of Imaging and Modelisation in Neurobiology and Cancerology, IN2P3, CNRS, Orsay, France

³Omega Microelectronics group, CNRS, Palaiseau, France

OUTLINE

Introduction

- Technique of nuclear imaging
- Radio-guided surgery
- Per-operative detection systems
- Compact imaging gamma camera MAGICS
 - Principle
 - SiPM arrays
 - Read-out electronics
 - Characteristics

Conclusions

Technique of nuclear imaging

• Principle

Markingradio-pharmaceutical product

- radioactive isotopes
 - ^{99m}Tc, ¹²³I, ²⁰¹Tl, ¹⁸F, ¹¹C
 - emitters γ,β^+

Detection • γ camera, tomographs

• Detection systems Cancer diagnostic

Nicoleta Dinu, LAL, Orsay, France

Cancer therapy

Cancer therapy

- Radio-guided surgery
 - Surgical practice for different cancer pathologies
 - protocol of sentinel lymphatic node mapping (breast, melanoma, prostate, uterus)
 - colorectal and thyroid tumors
 - neuro-endocrines tumors and their metastatic disseminations
 - subclinical tumors (non-palpable) of breast
 - bone lesions (osteoma)
 - parathyroid adenoma
- Per-operative detection systems
 - Gamma probes
 - ergonomic shape (pencil)
 - 1-2 cm diameter, 10-20 cm length
 - sound signal proportional to counting rate
 - Gamma imaging cameras
 - cover larger area: 10-100 cm²
 - give the spatial distribution of the radio-tracer
 - improve signal to noise ratio

Sentinella, Spain

POCI/TRECAM, France

Compact imaging gamma camera

• High resolution hand-held radiation detector for therapeutic purposes

Collaboration IMNC, LAL, Hôpital Lariboisière

Detection system requirements in surgical conditions

- reduced size and weight
- versatility of readout electronics
- high spatial resolution and sensitivity

SI 1828-3344M Hamamatsu HPK

- 4x4 monolithic SiPM array
- mounted on a SMD package
- Each SiPM = one readout channel: • $3x3 \text{ mm}^2$, 3600 µcells, each µcell - $50x50 \text{ µm}^2$

i-v measurements of monolithic SiPM arrays

SiPM characteristics uniformity

Elementary module of MAGICS camera

Characteristics of read-out electronics

EASIROC chip

- 32-channels fully analog front-end readout
- 8-bit DAC (0-2.5V) for individual SiPM gain adjustment
- energy measurement from 160 fC to 320 pC
 - 1 to 2000 pe @ SiPM gain of 10⁶
 - variable gain pre-amplifier tuned to 4 bits
 - variable shaping time from 25 to 175 ns
 - 2 multiplexed analog outputs (high gain, low gain)
 - I pe signal/noise ratio ≈ 9
- Low power consumption
 - 4.84 mW/channel, 155 mW/chip

Channels linearity for HG output $\sigma < 1\%$ from 160 fC to 100 pC

Channels uniformity for HG output

SiPM gain correction vs temperature

MAGICS camera

4 elementary modules 256 SiPM's = 256 readout channels

Mechanics

- alignment and assembling **Software**
- boards driving, data acquisition and treatment

4 elementary modules

MAGICS camera final view

Dimensions: 8.3 x 8.3 x 8.35 cm³ Weight: 1.2 kg Field of view : 5.1x5.1 cm²

Characteristics of MAGICS camera

Nicoleta Dinu, LAL, Orsay, France

• 9.5% @ 122 keV

Experimental conditions:

- LaBr₃(Ce) 6 mm thickness
- Sources of ⁵⁷Co(122 keV) and ²⁴¹Am(60 keV)
- central collimation hole of 4 mm diameter
- $V_{BIAS} = 75.52V, T = 40^{\circ}C$

Spatial resolution:

• 1.13 mm @ 122 keV

Experimental conditions:

- LaBr₃(Ce) 6 mm thickness
- ⁵⁷Co(122 keV)
- I mm irradiation spots spaced 5 mm apart

H

- $V_{BIAS} = 75.52V, T = 40^{\circ}C$
- Levenberg-Marquard reconstruction algorithm

Conclusions

• MAGICS

- Miniaturized hand-held gamma camera
- Therapeutic purposes: assisting the surgeon on locating and removing tumors

• MAGICS main components

- 256 SiPM's: 4x4 monolithic arrays, 4x4 SiPM's each array
- 8 EASIROC chips for analogue front-end read-out
- Dedicated miniaturized readout electronics boards for data acquisition

• MAGICS main characteristics

- Geometry:
 - 8.3 x 8.3 x 8.35 cm³
 - Field of view: 5.1x5.1 cm²
- Weight: I.2 kg
- Detection:
 - Energy resolution of 9.5% @ 122 keV
 - Spatial resolution of less than 1 mm @ 122 keV on the whole field of view

• Future improvements

- Decrease the lateral dimensions and weight by using non-hygroscopic scintillator (GaGG)
- Improve the reconstruction algorithm

Additional slides

Comparison of MAGICS and TRECaM cameras

MAGICS camera

TRECaM camera based on **MAPMT**

Weight: 2.2 kg

MAGICS energy resolution:9.5% @ 122 keV TRECaM energy resolution:12.9% @ 122 keV

MAGICS spatial resolution: less then 1 mm@ 122 keV TRECaM spatial resolution: 1.36 mm @ 122 keV

Uniformity adjustments

- Uniform illumination of SiPM's by green LED
- Standardization of responses by DACs adjustments

Après correction