DE LA RECHERCHE À L'INDUSTRIE

www.cea.fr

ORIGAMIX, A CDTE-BASED SPECTRO-IMAGER DEVELOPMENT FOR NUCLEAR APPLICATIONS

<u>Sébastien Dubos¹</u> – Hermine Lemaire² – Frédérick Carrel² Olivier Limousin¹ – Aline Meuris¹ – Stéphane Schanne¹ Vincent Schoepff²

Sébastien Dubos, on behalf of the ORIGAMIX consortium

(1) : CEA, IRFU, Astrophysics Division(2) : CEA, LIST, Sensors and Electronic Architectures

JULY 2, 2014

NEW DEVELOPMENTS IN PHOTODETECTION - NDIP14, TOURS, FRANCE

Our team

- Part of CEA-IRFU / Astrophysics Division
- Instrumental developments for space applications
- Domains: hard X-rays & gamma-rays
- Technologies: CdTe-based spectro-imagers
- <u>Realization</u>: Integral (14 years of operation in Space)

Innovative approach

- Close collaboration with microelectronics division
- Homemade & customs front-end electronics
- Smaller is better: modular systems
- 3D packaging for low noise, large detection area
- All steps of integration under our control

10 years R&D for Space apps

- Now:
- CALISTE spectro-imagers
- MACSI detection plane (2012), ready to fly

Context / Motivations

ORIGAMIX project

Gamma imaging for post-accidental applications ORIGAMIX consortium Caliste HD assembly and key advantages First prototype

Spectroscopic performances

Energy calibration, linearity Energy response < 800 keV Charge-sharing Energy response up to 1.4 MeV

Perspectives & conclusion

Imagery Next steps

CONTEXT / MOTIVATIONS

Nuclear accidents: consequences

Three Mile Island: 1979

Tchernobyl: 1986

Fukushima: 2011

Huge impacts on human health, environment and society... for dozens of years
 In most cases: need of human intervention
 appropriate equipment for intervention in accidental situations

Major risks

Presence of hot spots strongly irradiatingNo information on their location and nature

Mitigation: gamma imaging →Image AND Spectrometric information →Simple, modular and easy-to-deploy tools

GAMMA IMAGING FOR POST-ACCIDENTAL APPLICATIONS

Already a strong international interest for this application, with various technologies

(a) Gamma-cam

(b) Captured image

T. Takahashi et al., Proceedings of the IEEE RTSD, 2012

K. Ohno et al., Proceedings of the IEEE RTSD, 2011

Cooperation

GAMMA IMAGING FOR POST-ACCIDENTAL APPLICATIONS

THE ORIGAMIX PROJECT

ORIGAMIX Project

- Association between different labs. to design a new generation of gamma camera with combined imaging and fine spectroscopic capabilities
- Use of CALISTE technology in a small and portable device
- Associated with several institutional and industrial partners

A multidisciplinary and complementary collaboration

CALISTE key advantages

- Space qualification: low power, radhard, high count rate, high redundancy
- Pixelated detectors, self-triggered
- Time-resolved imaging & spectrometry
- Low threshold: 1.3 keV
- 2 250 keV, up to 1 MeV
- Very low noise (FWHM @ 60 keV : 0.7 keV / 1.1 %)
- Modular, aboutable on its 4 sides
- Polarimetry capabilities (see Antier et al., NDIP 14)

Astrophysics... and beyond

- Initially developped by CEA-IRFU for HE astrophysics
 Focal plane for high-energy astrophysics
- Ex.: INTEGRAL, SIMBOL-X

Also:

- Solar Physics → SOLAR-ORBITER
- Nuclear Physics → ORIGAMIX

FROM CALISTE TO ORIGAMIX IDEF-X HD ASIC MAIN PROPERTIES

Full custom ASIC developed at CEA

- CMOS AMS 0.35µm
- 1D ASIC ; Area: 5.8 x 2.5 mm²
- 32 spectroscopic channels
- Individual tunable threshold
- Tunable shaper
- 4 tunable gains values:
 Select the appropriate energy-range
- Fully-programmable
- Low power: 800 µW/channel
- Radiation hard

Low noise 33 el. rms floor

Low capacitance / low current detectors (1 pF / 1 pA)
 Excellent spectroscopic performances

DE LA RECEDICIÓN À L'INDUSTRIA

FROM CALISTE TO ORIGAMIX CALISTE HD: HYBRIDIZATION

FROM CALISTE TO ORIGAMIX FIRST PROTOTYPE

Size matters...

DE LA RECHEICHE À L'HRUTTE

FROM CALISTE TO ORIGAMIX TEST BENCH

DELS RECEDENT & L'HOUTEN

ENERGY CALIBRATION - LINEARITY

Energy calibration

- Output in channels (ADU)
- Calibration for each pixel, independently
- 5 peaks, from 4 different sources
- 30 keV 661 keV

Gain – Linearity

Gain : 51.47 eV/ADU

INL max over 5 peaks:

- Mean: 0.81%
- <1% for 176/256 pixels (70%)
- <2% for 220/256 pixels (87%)

Fine energy calibration + linearity
 High spectroscopic performances

ENERGY RESPONSE < 800 KEV

Sum spectrum, for various sources

- Single events only (only 1 triggered pixel per frame)
- Best energy resolutions, but less efficiency
- Detection efficiency < 50% after 143 keV, Compton effect predominant

ENERGY RESPONSE < 800 KEV

Sum spectrum, for various sources

- Single events only (only 1 triggered pixel per frame)
- Best energy resolutions, but less efficiency

Detection efficiency < 50% after 143 keV, Compton effect predominant

DELA RECEDENT À L'INDUSTRI

CHARGE-SHARING

- <u>Charge-sharing:</u> ≈ 20 25 % (origin: energy deposition, fluorescence and diffusion)
 - Correlation graph
 - → Loss in energy reconstruction (up to 10 %)
 - → Loss of energy resolution
 - → Becomes preponderant at high energies
 - → Reconstruction: all events summarized (higher efficiency for high energies)

S. DUBOS - NDIP14 / JULY 2, 2014

DELS RECEDENT & L'HOURTER

ENERGY RESPONSE > 800 KEV

Sum spectrum, for various sources

- All multiplicities summarized
- Photoelectric peaks measured up to 1.33 MeV (!)
- Very low efficiency, mainly Compton effect

DELS RECEDENT À L'HOUTH

NEXT STEP: IMAGERY

Goal

- Precise source localization
- Use of coded masks (spatial resolution)
- Energy selection:
 - Better signal/noise ratio
 - Source discrimination

Example: ²⁴¹Am source

- 0.360 mm-thick tungsten mask
- 1 mm from the entrance window, source at 43 cm

h_../MHXI_MaskPhysical_n1.txt

DELS RECEDENT & L'HOURTER

NEXT STEP: IMAGERY

Example: ²⁴¹Am + ¹³⁷Cs

- 2 sources in the field of view
- Selection: peak at 60 keV ± 3-sigma

CONCLUSION / PERSPECTIVES

- ORIGAMIX is a new project dedicated to nuclear applications
- Integration of the CALISTE module in a gamma-imaging system
- First demonstrator already tested with various sources
- Excellent spectrometric performances, from low to high energies (up to 1.4 MeV)
- First tests with source localization.
- Fine evaluation needed (sensitivity, time of exposure, optimum pattern for coded mask...)
- Data acquisition and processing, new geometries...

A lot of work to do, but already promising results!

THANK YOU FOR YOUR ATTENTION

More information:

sebastien.dubos@cea.fr

Commissariat à l'énergie atomique et aux énergies alternatives Centre de Saclay | 91191 Gif-sur-Yvette Cedex T. +33 (0)1 69 08 62 94 | F. +33 (0)1 69 08 65 77 DSM Irfu Service d'Astrophysique

Etablissement public à caractère industriel et commercial RCS Paris B 775 685 019