

A Compact Coded-mask Imaging Camera with a CdTe Double-sided Strip Detector

Yuusuke Uchida⁽¹⁾⁽²⁾

Atsushi Togo⁽¹⁾⁽²⁾, Shin Watanabe⁽¹⁾⁽²⁾, Shin'ichiro Takeda⁽¹⁾, Goro Sato⁽³⁾, Hirokazu Odaka⁽¹⁾, Taro Fukuyama⁽¹⁾⁽²⁾, Koichi Hagino⁽¹⁾⁽²⁾, Tamotsu Sato⁽¹⁾⁽²⁾, Tadayuki Takahashi⁽¹⁾⁽²⁾

ISAS/JAXA⁽¹⁾

Department of Physics, The University of Tokyo⁽²⁾

Waseda University $^{(3)}$

Wide FOV Gamma-ray Camara for Space

Astronomical objects are often "highly" variable in X-ray and Gamma-ray. In order to monitor these sources and to study their nature, **An All Sky Monitor is important**.

 With a wide FOV coded-mask, Swift and Integral have provided spectral and temporal information of MANY hard X-ray sources.
Identification of these Hard X-ray Sources contributes greatly to our understanding of radiation mechanism of these sources.

- Our approach :
 - Small size coded mask module
 - Multiple modules : Sensitivity and FoV scalable
 - Background rejection with anti coincidence shields
 - Small satellite
 - Low cost
 - Variety of use

Difficulty : Keeping required angular resolution (~10 arcmin), when solution (when solution the imaging system.

How to make the imager smaller

Factors for angular resolution :

CdTe Double-side Strip Detector

KEY TECHNOLOGY Developed by ISAS/JAXA (ex. Watanabe et al. (2009))

- CdTe Double-side Strip Detector (CdTe DSD)
 - Strip pitch : 250 μm
 - Number of strips : 128 x 128 ch (16384 pixel)
 - Detector size : $32 \times 32 \text{ mm}^2$
- thickness : 750 μ m
- Based on CdTe "Schottky" Diode (Takahashi et al. 1998)

Energy Resolution

Imaging Capability

Compact Coded Mask Detector

KEY TECHNOLOGY : Micro Coded Mask

a newly developed fine aperture coded mask

- Coded aperture : $350 \mu m$
- Mask size : 36.75 x 36.75 mm²
- Mask thickness : ~ 400 μ m
- 8 stacks of Ni (50 μ m) plated Au (2-3 μ m)
- transparency
 - :0%~30 keV, 50% @60 keV, 75%@120 keV
- Random Mask, mask open fraction 0.5
- Extracted from the pattern used in Swift/BAT

Experimental Setup

- Cooling System using Peltier
- Image deconvolution method : Balanced Correlation Method

Performance Evaluation

Linearity in sky image

40

30

Obs. 80 min, -5°C

Factors for degrading image linearity :

- Non-unifomity of focal detector
- Polarization effect of CdTe <u>Am#1 3360 kBq</u>

Result is well consistent with the expected value.

NDIP 2014, Tours, July 2, 2014

100

Imaging capability in hard X-ray

Experimental results with ²⁴¹Am (17, 59 keV) and ⁵⁷Co (122 keV)

Imaging up to ~ 120 keV is achieved.

In high energy region, the coded mask becomes transparency. Although a thick mask can expand energy band, it makes the field of view narrow. **Tradeoff studies and optimization are underway**.

Development of MC simulator

Studies for astrophysical use

Optimization of mask and detector configuration

Reduction of systematic error

Next work

mm

Design optimized for astrophysical use

NDIP 2014, Tours, July 2, 2014

X [mm]

²⁴¹Am, 17 keV (Experiment)

Summary

We have developed a new "Compact" imager for hard X-rays (10 - 100 keV) based on newly developed

1. Large area (~ 10 cm²) and high resolution (~ a few hundred μ m) CdTe Imagers —— CdTe Double Sided Detector

2. Fine pitch coded masks

The performance of the first prototype is very promising to realize an instrument to be onboard a future mission.

Angular resolution : ~ 10 - 15 arcmin Energy range : 5 - 150 keV Reasonable Sensitivity and All sky coverage by using multiple units with Narrow FOV + Shield

Thank you !!

Simple Sensitivity Calculation for a future mission

	Swift/BAT	Our prototype	Figure of Merit = FoV x Area
FoV [deg	4600	256	With 18 units, can cover the same FoV
Detector Area [cm	5200	10.24	With 18x28 units, can achieve the same area

