

Development of the MCP-PMT for the Belle II TOP Counter

July 2, 2014 at NDIP 2014

Shigeki Hirose (Nagoya University)

K. Matsuoka, T. Yonekura, T. Iijima, K. Inami, D. Furumura, T. Hayakawa, Y. Kato, R. Mizuno, Y. Sato, K. Suzuki

TOP Counter for Belle II

- <u>Time Of Propagation counter</u>
 - K/π identification on the barrel region with Cherenkov radiation
- For PID with TOP counters, photodetectors must have:
 - Good single photon detection efficiency
 - Excellent TTS (<50 ps)
 - Pixel size of ~5 mm
 - Large photo-coverage
 - Operable in 1.5 T

MCP-PMT

2700 mm

450 mm

Photodetectors

 $\Delta t_{\text{K-}\pi}\,{}^{\sim}100$ ps @ 3 GeV/c K or π

= O(10)

θ

N_{photons}

NDIP 2014 at

1.5 T solenoid

 $\cos\theta_{c} = 1 / n\beta$

MCP-PMT Development

- Tested some samples in magnetic fields Nucl. Instr. and Meth. A528, 763 (2004) Nucl. Instr. and Meth. A592, 247 (2008)
 - HPK6 with ϕ 6 um pores HPK10 with ϕ 10 um pores
 - BINP8 with φ8 um pores
 Burle25 with φ25 um pores
- 10 um was the best selection
 - Good gain & TTS in 1.5 T
 - Reliable to produce 3 cm² size MCP compared to 6 um size

pore

Square-shaped MCP-PMT (R10754)^{4/15}

Developed original MCP-PMT (R10754-07-M16) with HAMAMATSU

- Square shape to maximize photo-coverage in an array

 \rightarrow 32 PMTs/TOP x 16 TOPs = <u>512 PMTs</u>

- 4x4 anodes, one anode pad has a size of 5.6x5.6 mm²
- ~10⁶ gain in 1.5 T by 2-stage MCPs (t = 400 um)
- Fast raise time of ~200 ps, TTS of 30-40 ps
- Multi-alkali p.c., QE_{peak} ~28% around 360 nm
 Excellent characteristics for TOP counter

Lifetime Improvement

- QE drops during operation
 - QE drop is a function of total output charge < electrons
 - \rightarrow ~80% QE drop is acceptable
 - Estimated output charge is 2-3 C/cm² in Belle II
- Al layer for ion feedback protection
 - Evaluated effect of Al layer with round-shape PMT
 - $\sim 1 \text{ C/cm}^2$ lifetime was obtained with Al layer
 - \rightarrow Usable with a few times of PMT exchanges in Belle II operation

Schematic view in MCP

neutral gas

5/15

Nucl. Instr. and Meth. A564, 204 (2006)

gas molecules

Lifetime Improvement

6/15

Nucl. Instr. and Meth. A629, 111 (2011)

Successful Mass-production

- MCP-PMT mass production for the TOP counter
 - Produced <u>>500</u> MCP-PMTs
 - Measure QE and gain/TTS (0 T and 1.5 T) for all MCP-PMTs
 - \rightarrow Feedback to production/database of MCP-PMTs
- Further lifetime improvement with ALD-coated MCPs
 - ALD MCP had been available during production

 \rightarrow ~50% MCP-PMTs are ALD type

QE Measurement

Irradiate monochromatic light to Spectrometer MCP-PMT and PD by turns Xe lamp QE_{PD} is well calibrated HPK L2195 SHIMAZU SPG-120S MCP-PMT φ1 mm \rightarrow QE_{MCP-PMT} = (I_{MCP-PMT p.c.} / I_{PD}) x QE_{PD} slit pico-PD 473 PMTs have been measured lammeter **KEITHLEY 6487** - We use PMTs with $QE_{peak} > 24\%$ Movable stage \rightarrow <u>Averaged QE_{peak} >28%</u> QE at 360 nm 30 QE (%) 30 25 QE_{mean}= 28.7% 25 20 20 15 15 10 10 ←discard less than 340 nm 5 5 to relax chromatic dispersion 0 0∟ 20 32 300 350 400 450 500 550 600 650 22 24 26 28 30 38 34 36 QE (%) Wavelength (nm) NDIP 2014 at Tours

Measurements with Single Photon

- Measurements with single photon
 - Light from pulse laser with σ_{laser} <20 ps
 - \rightarrow Intensity is reduced to single photon level
 - Jitter on readout electronics σ_{jitter} <20 ps
 - All of 16 channels can be measured with moving the MCP-PMT position

■ Gain/TTS in 1.5 T

- In 1.5 T (perpendicular to the PMT window)
 - ~100 PMTs have been measured (the measurement is ongoing)
 - Gain decreases down to 60% (conventional PMTs) or 30% (ALD PMTs)

- Can keep > 5x10⁵, which is enough for single photon detection
- All PMT has TTS better than 50 ps in the magnetic field
 - Slightly worse TTS of ALD PMTs is caused by lower gain in 1.5 T

Beamtest @ SPring-8

- Constructed a prototype TOP counter for beamtest
 - 2x16 MCP-PMT array for full photo-coverage
 - Two types of readout electronics
 - IRS; waveform sampling ASIC for Belle II, still under development
 - CFD; traditional elec., only for beamtest because of large power consumption

Beamtest @ SPring-8

Belle II PID group

- Irradiated 2 GeV e⁺ at the SPring-8 LEPS beamline
 - Good agreement between data and PDF
 Data (CFD)
 * 4 anode channels are merged Calculated PDF (CFD)

MCP-PMTs work very well as photodetectors of the TOP counter

for more details of the beamtest,

- ✓ Nucl. Instr. and Meth. A732, 357 (2013)
- K. Matsuoka, "Performance study of the TOP counter

NDIP 2 with the 2 GeV/c positron beam at LEPS" at TIPP2014

■ Lifetime of ALD MCP-PMTs

Test setup

- Illuminate LED to PMTs to obtain output charge
- \rightarrow ~1 C/cm²/month, which is 1/2-1/4 of Belle II operation
- Laser as a light source for single photon measurement
- \rightarrow QE can be relatively monitored from the change of N_{hit} by the laser

Lifetime of ALD MCP-PMTs

- Lifetime of ALD MCP-PMTs
 - ALD MCP-PMTs have 3-14 C/cm² lifetime, which is 3-14 times longer than typical lifetime of present types with conventional MCPs.

14/15

 \rightarrow We can avoid exchanging ALD MCP-PMTs in Belle II

- Lifetime variation is large
 - Further investigation is ongoing to suppress variation

Summary

- We developed original MCP-PMT (R10754-07-M16)
 - Peak QE of ~28%, excellent TTS of 30-40 ps, operable in 1.5 T

- Square shape to increase effective area
- ~1 C/cm² lifetime
- \rightarrow We started to mass production
- Successful mass production
 - We produced >500 PMTs with excellent performance
 - While measurements are still ongoing, all of measured PMTs have QE_{peak} ~28%, and 30-60% gain drop & TTS < 50 ps in 1.5 T
- Lifetime improvement by ALD technique
 - Lifetime is extended to 3-14 C/cm²; possible to avoid PMT exchanges
 - Lifetime variation is large
 - \rightarrow trying to reduce the variation and will use them for future PMT exchange

Additional Slides

Photodetector Selection

- Photodetectors must work in 1.5 T
 - Candidates were fine mesh PMT, HAPD and MCP-PMT

	Gain(1.5 T*) (x10 ⁶)	TTS
FM-PMT	0.1-1	~100 ps
HAPD	0.5	~100 ps
MCP-PMT	1	30 ps

*Perpendicular to entrance face

From the viewpoint of TTS, we selected MCP-PMT

Nucl. Instr. and Meth. A460, 326 (2001) Nucl. Instr. and Meth. A463, 220 (2001) Nucl. Instr. and Meth. A528, 763 (2004)

Lifetime vs HV

• No clear correlation

18/15

Amplifiers

• We use 2-stage amplifiers

	Gali 39+ (1 st amp)	Gali 84 (2 nd amp)
Product	Mini-Circuits	Mini-Circuits
Gain at 1 GHz	21.1 dB	22.7 dB
Noise Figure at 1 GHz	2.4 dB	4.4 dB

Noise level ~5 mV

Gain Uniformity Issue

- Gain Uniformity
 - Gain ratio = Gain^{ch}_{max} / Gain^{ch}_{min} is about 6 at max.
 - For TOP operation, we may need to exclude large R PMTs
- Finer scan for some samples • ິມ ເມ 3.5⁰) 3 (×10⁶) 9ain (×10⁶) Large R PMTs have characteristic structure gain ratio 6 2 1.5 5 -5 0.5 -10 -10 -5 0 5 10 4 (mm) 3 ъ 5 5 gain (×10⁶) ີ ແ ເ 2 1.5 0 1 -5 0.5 12/01 12/0712/1213/12 11/07 13/07 -10 delivery date 10 -5 5 -10 0 (mm)

■ TOP (Time of Propagation) Counter ^{22/15}

■ TOP (Time of Propagation) Counter ^{23/15}

PID is performed by two different PDFs

- To perform PID precisely, MCP-PMTs must have
 - QE >28%
 - Time resolution <50 ps (single photon detection)

How to See the Beamtest Result

24/15

MCP-PMT for single photon

• Timing properties under B=0~1.5T parallel to PMT

MCP-PMT	HPK6 R3809U-50-11X	BINP8 N4428	HPK10 R3809U-50-25X	Burle25 85011-501
PMT size(mm)	45	30.5	52	71x71
Effective size(mm)	11	18	25	50x50
MCP hole diameter(µm)	6	8	10	25
Length-diameter ratio	40	40	43	40
Bias angle (deg.)	13	5	12	10
Max. H.V. (V)	3600	3200	3600	2500
photo-cathode	multi-alkali	multi-alkali	multi-alkali	bi-alkali
Q.E.(%) (λ=408nm)	26 ^{DIP 2014}	at Tours 18	26	24 ²⁵

■ QE

- MA; higher QE in red region, but peak is lower
- SBA; higher QE in blue region & wide peak, but difficult to obtain high QE in case of MCP-PMT
- new MA; higher QE in blue region. Although peak width is narrower than SBA, activation is very stable.

Radiation Hardness (γ rays)

27/15

QE Estimation: 30 krad for Belle II 10 years

Radiation Hardness (neutrons)

• Estimation: 2x10¹¹ n/cm² for Belle II 10 years

QE(ratio)-neutron irradiation

Bolosillicate window

28/15

Fused sillica window → good hardness

■ Gain & TTS measurement

29/15

Exchange of MCP-PMTs

- Readout module
 One module has 4 MCP-PIMTs
- How to change PMTs
 - Take off a module from a cutout \rightarrow change a failed MCP-PMT

Xe lamp

Irradiance

WAVELENGTH (nm)

Chromatic Dispersion

- Refractive index is a function of λ (wavelength)
 - Therefore, light speed in material is also a function of λ
 - \rightarrow The shorter wavelength is, the slower propagation speed is.

NDIP 2014 at Tours

Cherenkov Emission

• Wavelength dependence of Cherenkov photons is

$$\frac{dN}{d\lambda} = 2\pi Z^2 \alpha L \left(1 - \frac{1}{n^2 \beta^2}\right) \frac{1}{\lambda^2}$$

Measurement System in 1.5 T

B-field tolerant system

- A jig made of non-magnetic materials
- MCP-PMT is fixed tightly
- The jig is moved by the motorized stage located outside of B-field
- MPPC is used as an intensity monitor instead of a reference PMT.

No magnetic materials in the jig

Uniformity of the Magnetic Field

Uniformity of B-field is good enough

Mechanical Inspections

Visual inspection

Confirm PMT's shape with a go-nogo gauge

36/15

HV application test

