

Tours, France, June 30th to July 4th 2014

MCP photon detectors studies for the TORCH detector

Lucía Castillo García

NDIP U

erc

European Research Council Established by the European Commission On behalf of the TORCH Collaboration (CERN, Bristol and Oxford Universities)

Ring Imaging Cherenkov Detectors session - 2nd July 2014

Layout

- Introduction to TORCH
- Photon detector characterization:
 - Commercial MCP devices performance with single-channel and custom multi-channel front-end electronics
 - Custom MCP devices performance with single-channel electronics
- Simulation and optical studies
- Beam test preparation
- Conclusions and perspectives

TORCH detector

- Time Of internally Reflected Cherenkov light (TORCH)
 - a proposed precision Time-of-Flight (TOF) detector for particle identification (PID) at low momentum [M.J. Charles, R. Forty, Nucl. Instr. Meth. A 639 (2011) 173] [R. Forty, 2014 JINST 9 C04024]
 - Motivation for TORCH development is LHCb upgrade [CERN-LHCC-2011-001]
 - Measure the TOF of charged-particle tracks with 12.5ps precision/track
 - Path length reconstruction \rightarrow ~1mrad precision required for (θ_x , θ_z)
 - Photon propagation time in quartz \rightarrow crossing time

Photon detectors requirements

- Single photon sensitivity → MCPs best for fast timing of single photons
- Development of photon detectors with finely segmented anode (8x128 channels)
 - Propagation angle projected on the quartz plate $(\theta_x) \rightarrow$ coarse segmentation (~6mm) sufficient
 - Propagation angle $(\theta_z) \rightarrow$ fine segmentation (~0.4mm) \rightarrow 50ps smearing of photon propagation time due to pixellization
- Arrival time precision of \leq 50ps for single photon signal at a gain of $\sim 5x10^5$

$$\sqrt{\sigma_{pixellization}^2 + \sigma_{timing}^2 \sim 70 ps}$$
 / detected photon

- Lifetime aspects:
 - detected photon rate: 1-10MHz/cm²
 - Integrated anode charge per year: 1-10C/cm²

	128 pixels	53 x 53 mm ² active area			
		8 columns			

TORCH R&D project

 4 year TORCH R&D project awarded by ERC, started 2 years ago (collaboration between CERN, Bristol and Oxford Universities)

[ERC-2011-AdG, 291175-TORCH, http://cordis.europa.eu/projects/rcn/103813_en.html]

Proof-of-principle with a prototype TORCH module

European Research Council Established by the European Commission

- Development of suitable MCP photon detectors with industrial partner: Photek (UK)
 - 1st phase: Circular MCP with extended lifetime (~5C/cm²)
 - Atomic layer deposition (ALD) coating
 - 2nd phase: Circular MCP with fine granularity
 - Modelling studies to achieve the required granularity
 - 3rd phase: Final square MCP with extended lifetime and fine granularity
 - High active area (>80%)

Commercial MCP devices (Photonis)

- Initial tests with commercial devices
 - Poster @NDIP11 showed tests with single-channel electronics → TTS ≤ 40ps in single photon regime and MCP gain 5x10⁵ [L. Castillo García, Nucl. Instr. Meth. A 695 (2012) 398]
 - Custom multi-channel electronics \rightarrow beam and laboratory tests (see later)
- Photon detectors from Photonis:
 - 8x8 array Planacon MCP (test tube)
 - Single-channel MCP (as time reference)

- Using custom multi-channel front-end electronics: [R.Gao et al., 2014 JINST 9 C02025]
 - fast amplifier and Time-Over-Threshold (TOT) discriminator (NINO8 ASIC) [F. Anghinolfi et al., Nucl. Instr. and Meth. A 533 (2004) 183]
 - time digitization converter (HPTDC ASIC) [M. Mota et al., IEEE Nucl. Sci. Symp. Conf. Rec. 2 (2000) 155]

NDIP14 Conference - 2/07/2014

MCP 8x8array Planacon

- Single photon regime: 0.5 photoelectrons on average per pulse
- Modest Planacon gain $(6x10^5) \rightarrow$ for lifetime aspects
- Planacon large input gap \rightarrow long back-scattering tail

Single-channel electronics

START signal: time reference from laser sync. signal STOP signal: Planacon pad

[L. Castillo García, Nucl. Instr. Meth. A 695 (2012) 398]

Custom front-end electronics (NINO8+HPTDC)

Without time walk correction and INL calibration of HPTDC chip 83% efficiency \rightarrow NINO8 threshold not optimal

NDIP14 Conference - 2/07/2014

charge: 5.16C/cm²

Custom MCP devices (Photek) - 1st phase

- 5 single-channel MCP-PMT225 with extended lifetime have been manufactured
 - Using ALD process coating on MCP
- Some devices have already been successfully

characterized through accelerated ageing tests

[T. M. Connely et al, Nucl. Instr. Meth. A 732 (2013) 388]

Initial MCP gain set to 10⁶

Total accumulated anode

30% reduction in MCP gain

No reduction in QE \rightarrow no

photocathode degradation

ALD coated MCP-PMT Life Test with Uncoated Control

Custom MCPs characterization

[T. Gys, et al., Performance and lifetime of micro-channel plate tubes for the TORCH detector, NIM A (2014) http://dx.doi.org/10.1016/j.nima.2014.04.020]

- PMT225/SN G1130510
- Dark count rate: 3.3kHz
- Modest gain 3x10⁵ @-2200V
- PHS $\rightarrow \mu \sim 0.35$ photoelectrons
- TTS $\rightarrow \sigma \sim 23 \text{ps}$

- Excellent timing performance → singlechannel MCP
- Other 4 tubes show similar performance

QE and ageing tests at CERN

Monochromator + filter wheel

QE experimental setup

Light-tight box (MCP and reference photodiode)

Picoampmeter /voltage source Optical power meter

• One custom MCP tube is currently

under ageing test

- High dark count rate tube
- Regularly monitoring of QE, gain and other parameters
- After $0.5C/cm^2$ no visible QE degradation, gain drop of $20\% \rightarrow$ in agreement with Photek tests

QE curves before ageing

QE curves after 0.5C/cm²

Custom MCP devices (Photek) - 2nd phase

- Modelling studies on-going to achieve required granularity
- 8x64 sufficient if charge-sharing between pads is used \rightarrow Improve resolution and reduce number of channels
- Simulated spatial resolution in the fine direction using chargesharing (NINO+HPTDC electronics) as function of MCP gain and NINO threshold [J.S. Milnes et al., NIM A (2014), http://dx.doi.org/10.1016/j.nima.2014.05.035]
- Strong dependence on MCP gain and NINO threshold
- Resolution degradation at higher thresholds
- Operate at 10⁶ MCP gain to achieve the required resolution

Simulated spatial resolution (Std. Dev.) in fine direction

Simulation

Optical studies

- Aim: measure and optimize transmission in UV region for radiator/optics coupled with UV epoxy glue
- Transmission curves for Quartz windows:

NDIP14 Conference - 2/07/2014

Beam test preparation

- Beam test periods:
 - SPS at CERN in October-November 2014 (high momentum beam: $p_{max} = 400 GeV/c$)
 - PS at CERN in December 2014 (low momentum beam)
- TORCH prototype:
 - Radiator plate (10x120x350mm³) and focusing prism \rightarrow Fused Silica
 - 2 photon detectors on focal plane → various MCPs to be used
 - Radiator glued to optics
 - Air gap between optics-photon detectors
 - Optics ordered \rightarrow final design ready, under manufacturing
- New electronics development on-going
 - design new board NINO32+HPTDC
 - improve channel density
 - possible integration of INL calibration and time walk correction

Conclusions and perspectives

- TORCH is an innovative detector proposed to achieve πK separation in the momentum range below 10 GeV/c
- Development of suitable photon detectors over a 3-phases R&D programme
 - 1st phase \rightarrow COMPLETED
 - 2^{nd} phase \rightarrow ON-GOING
 - 3rd phase \rightarrow next year
 - Finally, demonstration of TORCH concept with a prototype module
- Simulation studies on-going
- Development of next-generation custom front-end electronics (NINO32) on-going
- Beam tests foreseen end of 2014
- Further information → http://torch.physics.ox.ac.uk

Spare slides

TORCH detector

- It combines TOF and Ring Imaging Cherenkov (RICH) detection techniques
- $\Delta TOF(\pi K) = 37.5 \ ps$ at 10 GeV/c over a distance of ~10m
- PID system to achieve positive π/K separation at a 3 σ level in the momentum range below 10GeV/c
- 30 detected photons/track → Overall resolution per detected photon: ~70ps
- Cherenkov light production is prompt → use quartz as source of fast signal
- Single photon sensitivity

How to determine the TOF?

• Why do we measure θ_C ? $\cos \theta_C = 1/n\beta$

$$TOF = t_{TORCH} - t_{PV} = \frac{|x_{TORCH} - x_{PV}|}{\beta c} \qquad t_{TORCH} = t_{photon arrival} - TOP$$

- Correct for the chromatic dispersion of quartz: n(λ)
 - Cherenkov angle \rightarrow phase velocity: $\cos \theta_C = 1/\beta n_{phase}$
 - Time of Propagation (TOP) \rightarrow group velocity: $TOP = path \ length \ \frac{n_{group}}{c}$

•
$$\theta_C \rightarrow n_{phase} \rightarrow \lambda \rightarrow n_{group} \rightarrow \text{TOP} \rightarrow t_{TORCH}$$
 (crossing time)

- To obtain the TOF, we need the start time t_{PV}
 - Use other tracks from PV, most of them are pions $\rightarrow t_{PV}$: average time assuming they are all pions

TORCH detector

- Unrealistic to cover with a single quartz plate → evolve to modular layout
- For LHCb, surface to be instrumented is ~5x6m² at z=10m
- 18 identical modules, each 250×66×1cm³ → ~300 litres of quartz in total
- Reflective lower edge → photon detectors
 only needed on upper edge
 18 × 11 = 198 units, each with 1024 pads
 → 200k channels in total

Application: LHCb experiment

- Motivation for TORCH development is LHCb upgrade [CERN-LHCC-2011-001]
 - Luminosity: $2 \cdot 10^{33} cm^{-2} s^{-1}$
 - Event read out rate increased to 40MHz
- Currently, PID provided by two RICH detectors with three radiators (Silica aerogel, C_4F_{10} , CF_4) covering a momentum range from $\sim 2GeV/c$ up to 100GeV/c

PID Upgrade:

 Silica aerogel will not give a good performance (low photon yield <10 detected photons/saturated track) → To be removed and possibly replaced later by TORCH

NDIP14 Conference - 2/07/2014

MCP-PMT Planacon tube (Photonis)

- Photon detector:
 - 8x8 channels MCP-PMTs (Burle/Photonis)
- XP85012/A1 specifications:
 - MCP-PMT planacon
 - 8x8 array, 5.9/6.5 mm size/pitch

- 25 µm pore diameter, chevron configuration (2), 55% open-area ratio
- MCP gain up to 10⁶
- Large gaps:
 - PC-MCPin: ~ 4.5mm
 - MCPout-anode: ~ 3.5mm
- 53 mm x 53 mm active area, 59 mm x 59 mm total area \rightarrow 80% coverage ratio
- Total input active surface ratio ≤ 44%
- Bialkali photocathode
- Rise time 600 ps, pulse width 1.8 ns
- HV applied 2.6 kV (1.75 kV across the MCP)

Single-channel MCP tube (Photonis)

- Photon detector:
 - single channel MCP-PMT (Photonis NL)
- PP0365G specifications:
 - MCP-PMT tube
 - single channel (SMA connector)
 - 6µm pore diameter, chevron type (2), ~55% open-area ratio
 - low MCP gain typ. <10⁵
 - Small gaps:
 - PC-MCPin: 120µm
 - MCPout-anode:1mm
 - S20 photocathode on quartz
 - 18mm active diameter
 - 6pF anode capacitance
 - Rise time 20-80% >700ps
 - HV applied 2.93kV (1.95 kV across the MCP) filter and bleeder chain 1+(1-10-3)

Custom MCP device (Photek)

- Photon detector:
 - single channel MCP-PMT225 (Photek Ltd)
- PMT225 SN-G specifications:
 - MCP-PMT tube
 - single channel (SMA connector)
 - 10µm pore diameter, chevron type (2), ALD coated
 - MCP gain typ. 10⁶
 - Small gaps:
 - PC-MCPin: 200µm
 - S20 photocathode on quartz
 - 25mm active diameter
 - Rise time 360 ps
 - HV applied 2.25 kV (1.2 kV across the MCP)

MCP photon detectors tests - Summary

Photo	nis	O Photonis	Photek
	8x8array Planacon MCP (Photonis)	Single-channel MCP (Photonis)	Single-channel MCP (Photek)
Pore diameter [µm]	25	6	10
PC-MCP/MCP-anode gaps	large	small	small
Photocathode	Bialkali on borosilicate	S20 on quartz	S20 on quartz
Typical MCP gain	10 ⁶	10⁵	10 ⁶
Time resolution [ps]	Single-channel electronics: <40	<40	<30
Time resolution [ps]	Multi-channel electronics: <80		
NDIP14 Conference - 2/07/2014	Lucía Castillo 6	Farcía	24

Experimental setup

- Pulsed blue (405nm) laser diode @1KHz (20ps FWHM, sync<3ps)
- Monomode fibers
- ND filters: single photon regime
- Single-channel ORTEC electronics

where σ_{1phe} is the 1-photoelectron peak width

Experimental setup

- Pulsed blue (405nm) laser diode @1KHz (20ps FWHM, sync<3ps)
- Monomode fibers
- ND filters: single photon regime
- Single-channel ORTEC electronics
- Light calibration setup:
 - Pulse height spectrum (PHS)
 - Standard Poisson distribution to fit data
 - Average number of photoelectrons per pulse (µ) inferred from P(0)

Timing setup:

- Time jitter distribution
- Exponentially-modified Gaussian distribution to fit prompt peak → time resolution (σ)

Discriminator behaviour

- For a given discriminator threshold:
 - The noise induces a **jitter** \rightarrow signal is detected earlier or later in time
 - The signal height variation induces a walk:
 - Large signals are detected earlier
 - Small signals are detected later
- **Constant Fraction discriminator:**
 - Based on zero-crossing techniques

 - Large amplitudes:
 +walk → earlier / -walk → later
 Smaller amplitudes:
 - - +walk \rightarrow later / -walk \rightarrow earlier

- Produce accurate timing information from analog signals of varying heights but the same rise time
- Principle: splitting the input signal, attenuating half of it and delaying the other half, then feeding the two halves into a fast comparator with the delayed input inverted
- Effect: to trigger a timing signal at a constant fraction of the input amplitude, usually around 20%

CFD.

Contributions to MCP timing response

- Laser effect:
 - Second relaxation pulse clearly seen after ~(150 ± 50)ps on laser timing profile → visible on MCPs time response resulting in a shoulder after the main peak

- Back-scattered photoelectrons:
 - Maximum back-scattered time (elastically at 90° with MCP input surface): (t_{back-scattered}) _{MAX} = 2 × t_{transit}
 - Maximum back-scattered spatial range (elastically at 45° with MCP input surface): $(d_{back-scattered})_{MAX} = 2 \times MCP$ input gap

Single-channel timing fitting model

- Single-channel MCP investigated at several light intensities and laser tune setting [L. Castillo García, LHCb-INT-2013-042]
- Main peak of timing distributions represents the MCP intrinsic time response → fitted with an exponentially-modified Gaussian distribution [I. G. McWilliam, H. C. Bolton, Analytical Chemistry, Vol. 41, No. 13, November (1969) 1755-1762]

$$f(t, A, t_c, \sigma_g, \tau) = \frac{A}{\tau} \exp\left(\frac{1}{2} \left(\frac{\sigma_g}{\tau}\right)^2 - \frac{t - t_c}{\tau}\right) \left(\frac{1}{2} + \frac{1}{2} \operatorname{erf}\left(\frac{\frac{t - t_c}{\sigma_g} - \frac{\sigma_g}{\tau}}{\sqrt{2}}\right)\right)$$

t: time, *A*: amplitude, *t_c*: centroid at maximum height of the unmodified Gaussian, σ_g : standard deviation of the unmodified Gaussian, τ : time constant of exponential decay used to modify the Gaussian and $erf(z) = \frac{2}{\sqrt{\pi}} \int_0^z e^{-t^2} dt$.

- Model chosen given the asymmetry in the MCP time response for large values of μ.
- **Time jitter** value defined as the standard deviation σ_g of the Gaussian.
- Use to extract the timing resolution for Planacon MCP