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Waveform
analysis

Digital oscilloscope
TDS5032B (350 MHz)

Fast amplifier
AD8367 (500MHz)

Hamamatsu MPPC
S10362-11-100C
S10362-33-100C

Experimental method

exp(-t/23ns)

• Dark conditions

• Room temperature
• Nothing attached

to the SiPM

Threshold

• Pulse identification from deconvolution
• Arrival time with ~1 ns precision
• Close pulses distinguished with a 

resolution of ~6 ns
• Peak of deconvolution proportional to 

avalanche amplitude
• More precise measurement of amplitude 

as pulse height with baseline 
subtraction
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Waveform
analysis

Digital oscilloscope
TDS5032B (350 MHz)

Fast amplifier
AD8367 (500MHz)

Hamamatsu MPPC
S10362-11-100C
S10362-33-100C

Experimental method

Baseline subtraction

• Pulse identification from deconvolution
• Arrival time with ~1 ns precision
• Close pulses distinguished with a 

resolution of ~6 ns
• Peak of deconvolution proportional to 

avalanche amplitude
• More precise measurement of amplitude 

as pulse height with baseline 
subtraction
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• Dark conditions

• Room temperature
• Nothing attached

to the SiPM



Breakdown
voltage

Proportional
to gain

Experimental results
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Probability distribution P1(k) (1 primary pixel + k-1 CT-opt)
• CT-opt only possible in a neighborhood of pixels around the primary one

• Same probability to excite any individual neighbor

• Cascades of CT excitations limited by local saturation effects (border effects 
ignored)

Modeling optical crosstalk: hypotheses

4 nearest neighbors 8 nearest neighbors 8 L-connected neighbors All neighbors
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Example for the 4 nearest neighbors:
Two different CT-opt “histories”
contributing to P1(5)

L. Gallego et al.
JINST 8 (2013) P05010



Analytical expressions for P1(k) and related parameters

Modeling optical crosstalk: formulations
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Geometric extrapolation for k > 5

p : prob. for 1 neighbor ε = P1(k>1)q = 1-p N : number pixels of the array

L. Gallego et al.
JINST 8 (2013) P05010



Validation with data at dark conditions

Overvoltage
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alExperiment
lTheoretica MPPC S10362-11-100C

69.8 V, ~25ºC

The only model 
consistent with our data
for both s10365-11-100C 
and s10365-33-100C 
(border effects unimportant)

L. Gallego et al.
JINST 8 (2013) P05010

Previous analytical models 
from S. Vinogradov:
limit situations of ours

ε = P1(k>1) = 1 – P1(1)



Under pulsed illumination, i.e., simultaneous incoming photons
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Application to photon counting L. Gallego et al.
JINST 8 (2013) P05010

Pph(k) : prob. distribution of real detected photons
Pobs(k) : observed prob. distribution (with CT-opt)
ε = P1(k>1) : overall CT-opt probability

Mean and variance of real 
number of photons: Approximation valid for 

k << total number of 
pixels, i.e., linear range



Distribution of arrival time wrt the previous pulse (primary). We select 
primaries with amplitudes of 1 pixel and far from former pulses (> 500 ns)

Modeling AP and CT-diff: method
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tmin = 10 ns : minimum t (analysis limitations) 
RDC : dark count rate

λi : average number of secondary pulses
of type i per primary avalanche

fi(t) : normalized time distribution of 
secondary pulses of type i

• Poisson statistics for each source of secondary pulses
• 2 components of AP-trap with different mean release time
• Timing of carrier diffusion and the relative contributions of AP-diff and     

CT-diff obtained by Monte Carlo
• Pixel recovery and detection threshold effects included for AP
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For each AP-trap component

Effective time distribution of afterpulses
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τ : mean release time of
trapped carriers

Average AP amplitude
∝ pixel recovery V(t)
∝ avalanche probability

Fraction of APs above 
threshold Ac 

AP amplitudes at given t are assumed to follow a Gaussian 
distribution with mean µ(t) and variance σ2(t) = C·µ(t)

Fitting parameters: 
µ
∞
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Gaussian fits

t0 ≈ 5 ns ,   trec ≈ 37 ns 
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Monte Carlo of carrier diffusion

τp : lifetime of minority carriers (p) in Si n++

(before being recombined)

n++ 1018 cm-3< Nd < 1019 cm-3
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Black body at 4500 K
Dp = 4.24 cm2s-1

τp = 109 ns
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Results at given voltage
• 2 AP-trap components actually 

needed. The slow one is dominant

τslow = 108 ± 30 ns ; λslow = 0.170 ± 0.022

τfast =   23 ± 5 ns ; λfast = 0.065 ± 0.020

• CT-diff also important at short time

λCT-diff = 0.062 ± 0.028

λAP-diff < 0.012

• Best fit for τp ~ 1 µs (Nd ~ 1018 cm-3), 
but not too much sensitive to the 
parameters implemented in the 
simulation

At short time dark 
counts and CT-diff 
can be separated 
from AP

S10362-11-100C
69.8 V, ~25ºC
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Dependence on overvoltage

• Consistency in the time distributions fi(t) as a 
function of overvoltage ∆V. In particular, constant 
mean release time for both AP-trap components  
(i.e., τslow and τfast).

• Number of secondary pulses of each type λi
(~ probability) grows quadratically as expected

∆V = 0.6 V

∆V = 0.9 V

∆V = 1.2 V

λ = C·∆V2
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Conclusions I
• We have developed an experimental method based on a 

waveform analysis to characterize CT and AP in SiPMs

Optical crosstalk:

• We constructed a statistical, analytical model taking into account:

– Pixels have a finite number of neighbors

– Cascades of CT excitations

– Saturation effects due to pixel dead time

• Experimental data (S10362-11-100C and S10362-33-100C from 
Hamamatsu) are consistent with the hypothesis that CT-opt only 
takes place between adjacent pixels

• Correction for CT-opt effects on photon counting measurements at 
pulsed illumination of low intensity
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Conclusions II
Afterpulsing and delayed crosstalk

• We constructed a statistical model based on:

– Poisson statistics for number of secondary pulses

– 2 types of traps with different mean release time

– Timing of carrier diffusion and relative probabilities of AP-diff and 
CT-diff determined by Monte Carlo

– Pixel recovery time and threshold effects included

• Slow component of AP-trap is dominant but the fast one and CT-
diff are significant too

• AP and CT-diff probabilities grow quadratically with overvoltage

• We have not applied the model to any experimental case yet, but it 
is suitable to be implemented in a Monte Carlo simulation of an 
experiment to account for these effects
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Backup

Theoretical probability distributions

ε = 0.15

MPPC S10362-11-100C (100 pixels)
69.8 V, ~25ºC

MPPC S10362-33-100C (900 pixels)
73.2 V, ~25ºC

Results independent of the size of the array 
→ border effects are unimportant



Backup

Selecting primary pulses with 
amplitudes of 1 pixel

Selecting primary pulses with 
amplitudes of more than 1 pixel

Probabilities of AP and CT-diff increase 
by a factor ~2 as expected



Backup

Consistency in the time distributions
More dark counts
Higher CT-diff probability

MPPC S10362-11-100C (100 pixels)
69.8 V, ~25ºC

MPPC S10362-33-100C (900 pixels)
73.2 V, ~25ºC


