

Functional performance of high-fill factor small-cell size SiPMs at FBK

<u>G. Paternoster</u>, F. Acerbi, A. Ferri, A. Gola, C. Piemonte, G. Zappalà, N. Zorzi

paternoster@fbk.eu

7th edition of the International Conference on New Developments In Photodetection - NDIP 14. July 2th 2014, Tours, France.

Outline

- Introducion
- Standard SiPM technology at FBK
- High-Density (HD) SiPM Technology
- HD-SiPM Functional Characterization
- Application Example: TOF-PET
- Conclusions

Standard SiPM technology at FBK

RGB Technology

N-on-P structure

Peak sensitivity: Red-Green-Blue

NUV Technology
P-on-N structure

Peak Sensitivity: Near Utra Violet

Parameter	RGB	NUV
Breakdown voltage	28.5 V	26.5 V
Cell Size (Fill Factor)	40 µm (60%)	40 µm (60%)
DCR (20C)	<400 kHz/mm ²	100 kHz/mm ²
DiCT	20%	<10%
DeCT+AP	15%	40%
Max PDE band	480-600 nm	300-400 nm
Peak PDE	35%	35%

Standard RGB SiPM: limits

1. Limited fill factor \rightarrow limited PDE

Dead border region

around each SPAD deteriorates the active-to-total area ratio (FF).

The key-point to increase FF is the reduction of gap between high-field region and cell border

Standard RGB SiPM: limits

2. Correlated noise

Optical Cross-talk

CT can be reduced:

- → with proper optical isolation structures;
- \rightarrow reducing the gain.

After-pulsing

It can be reduced:

- → reducing the carrier trapping centers;
- \rightarrow <u>reducing the gain</u>.

One way to reduce the gain is to reduce the Cell Size

RGB-HD SiPM technology

Keeping the same active area of the Std. RGB technology, we redesigned the border structure to increase the FF

RGB-HD SiPM technology

Trench characteristics:

- Narrow (< 1 µm)
- High aspect-ratio
 (depth > 5 µm)
- Low roughness sides
 -> low induced defects

Advantages:

- Optical isolation -> Reduced Direct and Delayed Cross talk
- Electrical isolation with reduced dead border width -> Small Cell Size without FF reduction

RGB-HD SiPM technology

Advantages of Small Cell Size

- 1. Lower correlated noise, because of lower gain (lower C_d):
- lower afterpulsing
- lower direct and delayed CT
- lower external Optical CT (with scintillator).

- 2. Larger dynamic range, higher linearity
- 3. Faster recharge time
 - reduced pile-up
 - useful with «slow» scintillators (CsI) for further dynamic range
- 4. Operation at higher over-voltage for
 - better temperature stability
 - better gain uniformity

Devices with five different CS have been produced and tested !

CS	Nominal FF	Cell Density
$12 \times 12 \ \mu m^2$	52 %	7056 cells/mm ²
$15 \times 15 \ \mu m^2$	62 %	4624 cells/mm ²
$20 \times 20 \ \mu m^2$	66 %	2500 cells/mm ²
$25 \times 25 \ \mu m^2$	72 %	1600 cells/mm ²
30 × 30 µm²	77 %	1156 cells/mm ²

RGB-HD SiPM Functional Characterization Main Parameters

....

Gain

- Number of electrons produced per detected photon
- Correlated Noise
 - after-pulsing, optical cross-talk
- Primary Noise (DCR)
 - Thermal+Tunneling generated events
- Photo-detection efficiency (PDE)
 - Number of detected photons over total incident photons

RGB-HD SiPM Functional Characterization:

GAIN

12

5×10⁶ 30µm 🔶 12 μm **Δ---** 15 μm Std. SiPM RBG 4×10⁶ 🗕 20 μm (CS 40 µm) **----** 30 μm 3×10⁶ 25µm Gain = $4 \ 10^{6}$ Gain (e[¯]) **FF 60 %** 2×10⁶ 20µm **RGB-HD** (CS 15µm) 15µm 1×10⁶ Gain = 4 10⁵ 12µm FF = 62 % 0 2 4 6 8 10 0 Over-voltage (V)

20°C, OV= 4 Volts

RGB-HD SiPM Functional Characterization: Crosstalk Probability

20°C, OV= 4 Volts

RGB-HD SiPM Functional Characterization: Dark Count Rate (DCR)

20°C, OV= 4 Volts

RGB-HD SiPM Functional Characterization: Photo Dection Efficiency (PDE)

Max Photo Detection Efficiency with Cross-talk & after-pulsing < 10%

Devices working at high OV have higher temperature stability

RGB-HD for TOF-PET (1)

Energy Resolution @ 511keV

4x4mm² SiPM-HD with 25μm cell coupled to 3x3x5mm³ LYSO (teflon wrapped)

Excellent energy resolution (corrected for non-linearity)

RGB-HD for TOF-PET (2)

Coincidence Time Resolution

2 4x4mm² SiPMs-HD each coupled to
 3x3x5mm³ LYSO (teflon wrapped)

in coincidence

Leading edge discriminator

Conclusion

- A new border structure in cell design allowed to obtain SiPM with small CS and high FF.
- The new devices have been characterized in terms of PDE and noise characteristics
- Very promising results with HD technology in terms of PDE and Correlated noise.
- Very promising results for TOF-PET applications (good energy resolution and coincidence time resolution)

Future Development

- We're already implementing new technological features to further increase FF and reduce the crosstalk.
- Development of NUV-HD technology SiPM with PDE peaked in UV region

Thanks for your attention !!!

... and thanks to all collaborators

Fabio Acerbi Pierluigi Bellutti Alessandro Ferri Gabriele Giacomini Alberto Gola Giovanni Paternoster Antonino Picciotto Gaetano Zappala' Nicola Zorzi

Patrick Bouvier Sabrina Colpo Alfredo Maglione Nicola Serra Alessandro Tarolli Nicola Fronza