

The Status of Large Area MCP-PMT R&D in China

Sen Qian

Institute of High energy Physics, Chinese Academy of Science

qians@ihep.ac.cn

On Behalf of the Workgroup

7th International Conference on **New Developments In Photodetection** Tours, France, June 30th to July 4th 2014

Outline

>1. The Motivation for JUNO;

▶2. The Design of the new MCP-PMT;

>3. The status of the MCP-PMT prototypes;

>4. The performance of the 8" MCP-PMT;

>5. Summary and Plan;

> The Jiangmen Underground Neutrino Observatory (JUNO) Experiment

As known Daya Bay II before;

- 20 kton LS detector
- **3% energy resolution**
- **Rich physics possibilities**
 - ⇒ Mass hierarchy
 - Precision measurement of 4 mixing parameters
 - ⇒ Supernovae neutrinos
 - ⇒ Geoneutrinos
 - ⇒ Sterile neutrinos
 - ⇒ Atmospheric neutrinos
 - ⇒ Exotic searches

Talk by Y.F. Wang at ICFA seminar 2008, Neutel 2011; by J. Cao at Nutel 2009, NuTurn 2012; Paper by L. Zhan, Y.F. Wang, J. Cao, L.J. Wen, PRD78:111103,2008; PRD79:073007,2009

Wednesday, July 2nd 2014 - Poster session Rosé (Les Mûriers, Chinon rosé 2013) Photodetectors for medical applications - PET - Photomultiplier Tubes - Microchannel Plates - Cristals

The PMT requirement of JUNO

- LS volume: $\times 20 \rightarrow$ for more statistics (40 events/day)
- Light (PE) \times 5 \rightarrow for better resolution ($\Delta M_{12}^2 / \Delta M_{23}^2 \sim 3\%$)
 - Three types of high QE 20" PMTs under development:
 - ⇒ Hammamatsu PMT with SBA photocathode
 - \Rightarrow And
- **Requirement:**
- ✓ High QE 20 inch PMT;
- ✓ Good SPE detection capability;
- ✓ Wide dynamic range;
- Low radioactive background;
- ✓ More than 20 years lifetime;
- Can withstand 0.4MPa Pressure;
- ✓ >15000 pieces;

≥20" Hammamatzu PMT

>20" MCP- PMT

- A new design using MCP: 4π collection
 - ⇒ Photonics-type PMT

Outline

- >1. The Motivation for JUNO;
- >2. The Design of the new MCP-PMT;
- >2.1 The Conventional PMT and our new design;
- >2.2 The Project team and Collaborators;
- >2.3 The R&D plan of MCP-PMT (method);
- >3. The status of the MCP-PMT prototypes;
- ▶4. The performance of the 8" MCP-PMT;
- ▶5. Summary and Plan;

The Conventional PMT

Photon Detection Efficiency (PE)= QE_{Trans} * CE = 20% * 70% = 14%

> The new design of a large area PMT

Photon Detection Efficiency: $15\% \rightarrow 30\%$; $\times \sim 2$ at least !

the Project team and Collaborators

effort by Yifang Wang;

Microchannel-Plate-Based Large Area Photomultiplier Collaboration (MLAPC)

> The R&D plan of MCP-PMT (method)

Outline

- >1. The Motivation for JUNO;
- >2. The Design of the new MCP-PMT;
- >3. The status of the MCP-PMT prototypes;
- >3.1 The Simulation and design of electron optics;
- >3.2 The large area glass bulb;
- >3.3 The prototypes in four years;
- >3.4 The successful 8 inch prototypes;
- >3.5 The 20 inch prototypes;
- ▶4. The performance of the 8" MCP-PMT;
- ►5. Summary and Plan;

The Simulation and design of electron optics

≻8 inch MCP & Anode Module;

➤The collection efficiency 8 inch

^{电势分布} ▶20 inch MCP & Anode module;

➤The collection efficiency 20 inch

The 20 inch Glass bulb

≻Large area

Superb water-resistance

>Low radioactive background Sample 1 Image: Imag

Low background gamma spectrometer in IHEP

> The Prototypes in four years

> The 8 inch Prototypes with horizontal MCPs

The Design MCP-PMT

The Prototype

The signal of the 8 inch PMT

The I-V curve of the PC

The body resistance of the MCP

The SPE of the PMT

The 8 inch Prototypes with Vertical MCPs

The Design MCP-PMT

The Prototype

Average Amp=100mV@2000V;

The signal of the 8 inch PMT

The I-V curve of the PC

The body resistance of the MCP

The SPE of the PMT

The 20 inch Prototypes with Vertical MCPs

The Design MCP-PMT

<image>

DPO3054 - 11:37:57 2014-4-25

The signal of the 20 inch PMT

QE= **10.3%** @**410nm**;

Gain=**7.8E6** @**2000V**;

The SPE of the PMT

Outline

- >1. The Motivation for JUNO;
- >2. The Design of the new MCP-PMT;
- >3. The status of the MCP-PMT prototypes;
- ▶4. The performance of the 8" MCP-PMT;
- ≻4.1 The Large PMT evaluation system for MCP-PMT of JUNO ;
- >4.2 The description of the test experiments on 31# prototype;
- ▶4.3 The performance of the 31# prototypes;
- ►5. Summary and Plan;

The Large PMT evaluation system for MCP-PMT of JUNO

The parameters of the MCP-PMT (testing)

800E-0

6.200E-08 5.600E-08 5.000E-0

4.400E-0 3.800E-0 3.200E-0

2.600E-08 2.000E-08 1.400E-08 8.000E-0

Others

- Anode Pulse Rise Time:
- Pre/Late/After Pulse;
- Dark Count
- The Single Photoelectron Spectrum; The voltage distribution (BASE) ; The Supply voltage; Typical Gain Caracteristic; Anode Dark Current
- Spectral Response; Wavelength of Maximum Response; Cathode Sensitivity: Luminous(2856K); >Quantum efficiency with λ
- Photocathode efficiency Area; Photocathode efficiency Uniform; \succ The position of the Sb, K, Cs;
- The linearity of the PMT Magnetic characteristics; Transit Time Spread (FWHM)

The Parameters of the MCP-PMT

- 1. The QE of the Photocathode@ 410nm;
- 2. The Quantum efficiency with λ ;
- 3. The QE uniformity of the photocathode@410nm;
- 4. The Rise time and Fall time;
- 5. The Transit Time Spread (TTS);
- 6. The Signal Photoelectron Spectrum @ Gain=2*10^7;
- 7. The Gain Vs High Voltage;
- 8. The Anode dark count with Threshold / HV@ Gain=2*10^7;
- 9. The Anode dark current @ Gain=2*10^7;
- 10. The linearity of the PMT;
- 11. The After-Pulse (Time Distribution / Ratio) of the PMT;
- 12. The dark noise distribution;
- 13. The resistance of the MCP of the PMT;

The QE of the Photocathode@ 410nm

R5912-DYB

Measurements VS Voltage

	Trans-PC	Trans+Ref PC
R5912	25%	?
R5912-100	35%	41%
MCP-PMT	20%	29%

> The Quantum efficiency with λ

The QE uniformity of the photocathode@410nm

-90

Trans-PC	min	Average	max
R5912	?	25%	?
R5912-100	32%	35%	38%
MCP-PMT	17%	20%	23%

R5912-DYB

The Rise time and Fall time

@ Gain~2*10^7;

Modify the signal of the MCP-PMT by the BASE

The Transit Time Spread (TTS) >

The data statistics by the TDC with SPE signals

The Signal Photoelectron Spectrum @ Gain~2*10^7

The Gain Vs High Voltage \succ

Voltage (V)

The data statistics by the QDC with SPE signals

The Anode dark count with threshold @ Gain~2*10^7

MCP-PMT-031#-A

Time After Closing the Dark Box (Hour)

	ΗV	Dark rate (0.25PE)
R5912	1600V	< 1kHz
R5912-100	1500V	~3.5kHz
MCP-PMT	2000V	~2.2kHz

The data statistics after 10 hours later

R5912-DYB

The Anode dark count with HV

R5912-100 Hamaniaton Nov 12-100 Dark Rate

The Anode dark current @ Gain~2*10^7

MCP-PMT-031#-A

R5912-DYB

	ΗV	Dark current
R5912	1600V	~1nA
R5912-100	1500V	~2nA
MCP-PMT	2000V	~6nA

The linearity of the PMT @ Gain ~ 2*10^7

PMT Peak Anode Current (mA)

The After-Pulse Ratio of the PMT (1) time distribution)

Data		
darknoise fit	χ^2 / ndf	513.5 / 363
0 Ion_type1	N ^{lon_type1} 1.81	5e+05 ± 5.850e+03
EIN	T ^{lon_type1}	1562 ± 28.6
	$\sigma^{lontype1}$	929 ± 40.1
	N ^{lon_type2} 3.19	1e+05 ± 5.705e+03
	T ^{lon_type2}	6367 ± 22.9
	$\sigma^{lontype2}$	1261 ± 26.7
	Darknoise rate	24.2 ± 0.4
	The shirt of a state of the sta	at de la contra
Ϋ́Ε Χ	41.14.11.4.4.4.4.4.	t to a state a state of t
0 5000	10000 1500	20
T^{a}	fterpulse :[ns]	
	DE040 400	
_	RJ912-100	

T_afterpulse

	Fast AP	Slow AP
R5912	1.6us	7us
R5912-100	1.5us	7.1us
MCP-PMT	3us	?

R5912-DYB

The After-Pulse Ratio of the PMT (1 time distribution)--INFN

Ch2,0,005 Volts/div,1e-007 s/div,2500 pd

MCP-PMT-031#-A

The After-Pulse Ratio of the PMT (① Ratio)

The dark noise distribution >

The resistance of the MCP of the PMT

B-MCP2

800

900

700

MCP module	A-MCP1	A-MCP2	B-MCP1	B-MCP2
@800V	83 Μ Ω	110 M Ω	74 Μ Ω	100 Μ Ω

Outline

>1. The Motivation for JUNO;

>2. The Design of the new MCP-PMT;

>3. The status of the MCP-PMT prototypes;

▶4. The performance of the 8" MCP-PMT;

>5. Summary and Plan;

PMT Type Parameters	R5912	R5912-100	МСР-РМТ
QE of the Photocathode@ 410nm	25%	35%	20% (25%)
QE uniformity	?	±3%	±3%
Rise / Fall time of the SPE signal Gain=2*10^7	3ns / 4ns	3.4ns / 4.6ns	5ns / 6.3ns
Amplitude of the SPE signal @Gain=2*10^7	17mV	18mV	17mV
Transit Time Spread (TTS)	5.5ns	1.5ns	3.5ns
P/V of the SPE signal @ Gain=2*10^7	> 2.5	> 2.5	1.5~2.5
The Voltage of the PMT @ Gain=2*10^7	1600V	1550V	2000V
Anode dark count @ Gain=2*10^7@ Tro.=0.25pe	< 1kHz	~3.5kHz	~2.2kHz
Anode dark current @ Gain=2*10^7	~1nA	~2nA	~6nA
The Charge of the dark noise distribution	1 pe	1 pe	1.4 pe
linearity of the PMT upto 40mA / < 60mA	\pm 2% / \pm 5%	±2% / ±4%	±2% / ±4%
After-Pulse time distribution: Fast / Slow	1.6us / 7us	1.5us / 7.1us	3us / ?
After-Pulse Ratio of the PMT	1.79%	0.1336%	Very small !

Summary

>1. A new type of MCP-PMT is designed for the next generation neutrino exp.

✓ Large ares: ~ 20";

✓ High photon detection efficiency: ~30%, at least \times 2 than normal PMT;

✓ Low cost: ~ low cost MCPs;

>2. The R&D process is composing with 3 steps.

① 5"(8") prototype with transmission photocathode;

2 5"(8") prototype with transmission and reflection photocathode;

③ 20" prototype with transmission and reflection photocathode;

>3. The R&D work is divided into 6 Parts to product the prototype to detect SPE:

①Photocathode; ②MCP; ③Glass; ④Photomultiplier;

5vacuum equipment; 6PreAMP & Base;

MCP-PMT development:

Technical issues mostly resolved

Successful 8" prototypes

A few 20" prototypes

There are lots of work to do!

Thank! 谢谢!

Thanks for your attention! Any comment and suggestion are welcomed!

