Thin metal film 4H-SiC vertical Schottky photodiodes for UV Index monitoring

Massimo Mazzillo¹, Antonella Sciuto², <u>Paolo Badalà¹</u>, Beatrice Carbone¹, Alfio Russo¹ and Salvatore Coffa¹

¹STMicroelectronics, Catania, Italy ²CNR-IMM, Catania, Italy

- Introduction
- Photodiode fabrication
- Morphological characterization
- Electro-optical characterization
- Conclusions

Introduction

The ultraviolet region

- The UV region covers the wavelength range 100 - 400 nm
- As sunlight passes through the atmosphere, all UV-C and about 90% of UV-B radiation are absorbed
- The UV radiation reaching the Earth's surface is composed of UV-A with a small UV-B component
- An excessive exposure to UV radiation may cause acute and chronic adverse health effects to skin and eye

The UV Index

- The UV Index (UVI) describes the degree of dangerousness of solar UV radiation at the Earth's surface
- It is defined as

 $UVI = K_{er} \int_{250 nm}^{400 nm} S_{er}(\lambda) E_{\lambda} d\lambda$

- UVI is closely related to sun elevation, latitude, cloud cover, altitude, ozone and ground reflection
- For simplicity it is divided into different levels

UV Index	Exposure level
0 – 2	Low
3 – 5	Moderate
6 – 7	High
8 – 10	Very high
11+	Extreme

The UV Index monitoring

- Photodetection in the UV region has drawn extensive attention owing to its application in biological and medical fields
- We propose a vertical 4H-SiC Schottky based detector operating in photovoltaic regime and coupled to an appropriate IC interface for the realization of an ultra-compact UVI sensor

Photodiode fabrication

Previous generation - Interdigitated

 In the previous years a vertical 4H-SiC Schottky UV detector, based on the pinch-off surface effect, obtained by means Ni₂Si of interdigitated contacts, has been developed

Drawbacks

- Difficulty to define with good reproducibility the width of the thin metal stripes
- Pinch-off affected by charge effects due to direct exposure of 4H-SiC surface

M. Mazzillo et al., IEEE Phot. Tech. Lett., Vol. 21, No. 23, pp. 1782-1784 (2009)

Adopted solution - Semitransparent metal

- An alternative solution, based on a Schottky contact realized through a continuous thin Ni₂Si film has been proposed
- Ni₂Si front layer has to be as thin as possible to guarantee a higher transmission in the UV range (10 nm Ni deposited; 20 nm silicide after RTP)
- Very low doping (8x10¹³ cm⁻³) epilayer is required to have the maximum detection efficiency at 0 V
- A sensitive area of 0.36 x 0.36 mm² has been chosen

Morphological characterization

Plan view TEM analyses 11

- First of all the continuity of Ni₂Si film has been verified by means of plan view TEM analyses
- fringes • The visible this in micrograph are due to the sample preparative, that gives a radial gradient of sample thickness

AFM analyses 12

- The surface of Ni₂Si film has also been investigated by means of AFM
- The film is uniform and exhibits low roughness. The value of RMS is 1.52 nm

Cross sectional TEM analyses 13

- The cross sectional TEM micrograph show a continuous Ni₂Si layer about 20 nm thick
- Carbon clusters at the Ni₂Si/4H-SiC interface and on the middle-bottom portion of the Ni₂Si layer are clearly visible
- These clusters are due to the segregation of residual carbon coming from the reaction between silicon and the metallic Ni

Cross sectional EFTEM chemical maps 14

TEM analyses with *in-situ* thermal treatment 15

- TEM analyses with in-situ treatment has been performed, rising the temperature from 200 °C up to 900 °C, with step of 50 °C and 15 minutes
- Any significant change of grains shape or grains boundaries has been observed
- The semitransparent metal barrier exhibits a good thermal stability

Electro-optical characterization

Leakage as a function of Temperature 17

- Low leakage current (<1 pA) measured also at high temperature
- High signal to noise ratio
- High efficiency also for very low UV photocurrent levels

Map of leakage 18

- Leakage has been measured at 0 V and room temperature on 168 devices on a wafer
- uniformity • Good of performance with very low values (approximately <1 pA)

C-V characteristic

- Capacitance has been measured at room temperature as a function of the applied reverse voltage
- The capacitance does not decrease significantly when move from 0 V to we increasing reverse bias applied to the device
- The low doped epilayer is depleted at 0 V

Responsivity @ 0 V

- Responsivity has been measured in photovoltaic operation condition
- Good optical response, also at low wavelengths, enabling an optimal wavelength match with erytema curve
- For a such sensitive area, a peak responsivity value in the range 0.035-0.05 A/W is required
- Visible blindness about 10⁻⁴

Temperature Coefficient of Responsivity

 The Temperature Coefficient of Responsivity becomes positive above 290 nm, due to the bandgap narrowing and to the enhanced indirect band transitions above this threshold

Conclusions 22

- A suitable 4H-SiC based detector operating in photovoltaic regime and coupled to an appropriate IC interface has been developed for the realization of an ultra-compact UVI sensor
- The use of a continuous metal silicide layer allows to obtain a good morphological reproducibility and uniformity on wafer of the electrooptical detectors performances with high wafer **yield**
- The low leakage current allows to obtain devices with very high signalto-noise ratio and thus able to read with high efficiency very low UV photocurrent levels.
- The low thickness of the metal layer on the top side of the photodiodes ensures a **good light transmission** in the UV range enabling an optimal wavelength match with the erythema curve and thus a reliable UV Index evaluation.

Aknowledgements 23

- S. Pannitteri, C. Bongiorno and M. Scuderi (CNR-IMM, Catania) for **TEM** analyses
- O. Pulvirenti and D. Calì (STMicroelectronics, Catania) for RTA process setup

Thank you

