

7th conference on New Developments in Photodetection Tours, 3rd July 2014

Latest results about the development of amorphous-silicon-based microchannel plates

Andrea Franco¹, Jonas Geissbühler¹, Nicolas Wyrsch¹, Christophe Ballif¹

¹Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and Thin-Film Electronics laboratory (PV-lab), 2000 Neuchâtel.

Outline

> Hydrogenated amorphous silicon

- Fabrication of amorphous-silicon-based microchannel plates (AMCPs)
- > AMCPs results of electron multiplication
- Conclusions and outlook

Hydrogenated amorphous silicon (a-Si:H)

- Si–Si bonds in tetrahedral coordination but ordered structure lost at long range
- ➤ 5-20% of atomic hydrogen, for dangling bonds passivation
- Bandgap of 1.8 eV
- > Thermally-activated electrical conductivity: $\sigma = \sigma_0 \exp\left(-\frac{E_a}{kT}\right)$

	a-Si:H resistivity $(\Omega \text{ cm})$	E _a (eV)
intrinsic	10 ¹⁰ -10 ¹² (10 ⁴ for c-Si)	0.7–0.8
n-doped	10 ² –10 ⁵ (10 ⁻¹ –10 ⁻³ for c-Si)	0.1–0.4
p-doped	10 ⁴ –10 ⁶ (1–10 ⁻² for c-Si)	0.3–0.6

Andrea Franco

NEUCHA

> Hydrogenated amorphous silicon

Fabrication of amorphous-silicon-based microchannel plates (AMCPs)

> AMCPs results of electron multiplication

> Conclusions and outlook

Amorphous-silicon-based microchannel plates (AMCPs)

Novel fabrication process: a-Si:H as MCP bulk material

- a-Si:H with $\rho \approx 10^{11} \Omega$ cm
- a-Si:H PE-CVD
- a-Si:H similar to c-Si

AMCP withstands large bias voltages and provides charge replenishment

vertically integrated AMCP on readout electronics channels micromachined with techniques of microelectronics industry, such as deep reactive ion etching (DRIE)

AMCP fabrication

DRIE of channels Mesa patterning of layer stack PE-CVD of layer stack

- 100 nm chromium and patterning
 - 1.5 μ m of SiO₂ on 4" c-Si wafer

PE-CVD reactor for a-Si:H

20 Å/s deposition rate 120 μm of total a-Si:H

PV-lab

IMT NEUCHATE

AMCP architecture with three electrodes

Three independent electrodes:

IMT NEUCHATE

- > <n> μ c-Si:H top electrode is biased up to -700 V (~10⁵ V/cm)
- > <n> μ c-Si:H intermediate electrode evacuates the leakage current
- Cr anode collects the multiplied electrons

AMCP test structures

NDIP 2014

- > Hydrogenated amorphous silicon
- Fabrication of amorphous-silicon-based microchannel plates (AMCPs)
- > AMCPs results of electron multiplication
- > Conclusions and outlook

Gain in continuous illumination regime

Full-field illumination at 254 nm with 16 nm of gold as photocathode

- Electron multiplication increases up to tested voltage of 500 V (7×10⁴ V/cm)
- Gain > 30 at -500 V, aspect ratio of 12.5:1
- > Gain independent on input current \rightarrow enough charge replenishment

Franco et al., Scientific Reports 4, 4597, 2014

10

NDIP 2014

Gain versus aspect ratio

Franco et al., Scientific Reports 4, 4597, 2014

11

Andrea Franco

Gain dependency on electron energy

Gain depends on the primary electron energy, according to the number of secondary electrons emitted at the first collision.

- gain increases by a factor 4 with AMCP tilt of 14°
- gain increases by a factor 2 with AMCP tilt of 44°

Seiler, JAP 54, R1-R18, 1983

Atomic layer deposition for gain enhancement

First ALD of 5 nm of AI_2O_3 on AMCP doubled the gain.

NDIP 2014

Conclusions

- Improved AMCP architecture. Enhanced sensitivity to electron multiplication.
- AMCPs vertically integrated on metallic anodes. Proven feasibility for AMCP integration on ASIC.
- AMCP proof of concept. Gain increases with the channel aspect ratio.
- Enhanced gain with high-emissive SE layer.

Outlook

> To improve the aspect ratio, 20:1 within immediate reach.

> To engineer a funnel structure at the channel entrance.

Vertical integration on ASIC (e.g. Medipix2, Timepix)

- Compact and rugged detector
- High spatial resolution (vertical integration)
- High temporal resolution ($D_{ch} < 10 \mu m$, conductive bulk)
- AMCP insensitivity to magnetic fields up to a few teslas
- Applications: fast fluorescence imaging, simultaneous PET/MRI, space missions, neutron detection, ...

Acknowledgements

- PV-Lab: Sylvain Dunand for helping with the PE-CVD depositions Jérémie Fonjallaz and Joël Currit for the realization of the UV setup
- CSEM: Pierre-André Clerc for the deep reactive ion etching Sylviane Pochon for the AMCP bonding
- EPFL CMi: Didier Bouvet for atomic layer deposition

Fonds national suisse Schweizerischer Nationalfonds Fondo nazionale svizzero Swiss National Science Foundation

Grant 200021_126926/1

Thank you for your attention

entre alle the de

Questions?

Back-up slides

18

AMCP characterization set-up

19

AMCP characterization set-up -2

AMCP characterization set-up -3

AMCP characterization set-up -4

Gain measurements with UV setup

Andrea Franco

Gain with the SEM beam

Each channel exposed for < 10 μ s, exposure rate of 10 Hz

Gain **drops** after having reached a maximum ➤ charge replenishment ok (I_{leak} >> I_{out})

charging of the decoupling layer surface

PV-lab

NEUCHATE