Sub-exposure time resolution in wide-field time-correlated single photon counting (TCSPC) imaging

Liisa Hirvonen

Department of Physics King's College London

July 3, 2014

Outline

- Background fluorescence lifetime imaging (FLIM) microscopy
- Wide-field time-correlated single photon counting (TCSPC) with ultrafast cameras
- Photon arrival time from phosphor decay

Poster 12: Electron-bombarded CCD (EBCCD) as a parallel-processing photoelectronic time-to-amplitude converter (TAC)

Fluorescence microscopy

- ullet Rejection of reflected light o imaging inside cells and tissues
- Tagging of specific components of cell, sub-cellular resolution, single molecule sensitivity
- ullet Visible wavelength o less damage, live cell dynamics & function

Fluorescence is multi-dimensional

- Intensity
- Position
- Wavelength
- Polarisation
- Lifetime

Nucleus - actin - mitochondria

Fluorescence Lifetime Imaging (FLIM)

- Fluorescence lifetime τ
 average time in excited state
- Independent of excitation intensity and fluorophore concentration
- Mapping of local environment:
 - Ion concentration (Na, Cl, Ca...)
 - Oxygen concentration
 - Acidity (pH)
 - Refractive index
 - Viscosity ...
- Applications: Cell biology, forensic science, art conservation, remote sensing, temperature sensing...

FLIM implementations (time-domain)

- Scanning TCSPC
 - Image build one pixel at a time
 - Max one photon per pulse
 - High rep-rate lasers
 - Nano/picosecond time resolution
- Wide-field gated detection
- Wide-field TCSPC with ultrafast camera

FLIM implementations (time-domain)

- Scanning TCSPC
- Wide-field gated detection
 - Fast (all pixels parallel)
 - Loss of photons
 - No single photon sensitivity
 - Photobleaching and intensity fluctuations affect measurement
- Wide-field TCSPC with ultrafast camera

FLIM implementations (time-domain)

- Scanning TCSPC
- Wide-field gated detection
- Wide-field TCSPC with ultrafast camera
 - All pixels parallel
 - No loss of photons
 - Unlimited dynamic range
 - Insensitive to photobleaching and intensity fluctuations
 - Time resolution determined by frame rate (microseconds)

Long lifetime probes

Transition metals

- Ru, Ir, Pt, Pd, Rh, Re, ...
- μs lifetimes
- Long Stokes shift, bright
- Chemically stable, water soluble
- Visible excitation wavelength

- Lanthanide compounds (Eu, Tb, ...): ms lifetimes
- Nanodiamonds, Quantum dots, ...

Microscope setup

- Nikon TE inverted microscope
- Light sources:
 - Picosecond pulsed diode laser
 - Pulsed LED
 - Mercury lamp with chopper
- Camera: Photron SA5 / SA1.1
 - 1 MHz frame rate: 16x64 pixels
 - 54 kHz frame rate: 320x264 pixels
- Camera and light source synchronised

Image intensifier

- Single photon sensitivity
- Photon creates a photoelectron, multiplication of electrons, conversion back to photons
- Our intensifier: 3 MCPs, P20 phosphor: long decay (μs), green

Data processing

Euro note

- Star in €20 note
- Lifetimes (biexponential):
 - 568±4 μs
 - 43±1 μs

Acquisition: 10000 frames/s, 50 frames/pulse, \sim 135000 frames, \sim 60 sec;

Exc: UV LED (365 nm) @ 50 Hz; Em: 515nm LP filter; $4\times$ air objective

Europium in living HeLa cells

- 40 nm Europium beads in living HeLa cells.
- 320x256 pixels, 20 kHz frame rate, 92.3 photons/pulse.
- Data collection time: 3.5 seconds.
- Lifetime \sim 570 μ s.

Ruthenium in solution

- Ru(dpp) in water and glycerol
- Lifetimes (monoexponential):

Water: 1.35 μs
 Glycerol: 5.05 μs

 Different lifetimes due to different oxygen diffusion rates

Acquisition: 1,000,000 frames/s, 50 frames/pulse, \sim 800,000 frames, <1 s; Exc: Diode laser (467 nm) @ 100 kHz; Em: 515nm LP filter; $10 \times$ air objective

4 D > 4 D > 4 E > 4 E > E 990

Summary (1st part)

- Image intensifier + ultrafast camera allows wide-field TCSPC imaging.
- Collection of up to 100's of photons / pulse.
- Time-resolution limited by camera frame rate to $\sim \mu s$.
- How to improve time resolution ?

Sub-exposure time resolution from phosphor decay

- Image intensifier phosphor screen has an afterglow.
- Decay time depends on the type of phosphor (ns to ms).
- P20: multi-exp, \sim 250 μ s
- Intensity ratio of first and second frame yields photon arrival time.

Intensity ratio to time conversion

- Convert intensity ratio frame2/frame1 to photon arrival time.
- Measured by reflection and varying the time delay between the frame start time and the laser trigger pulse.
- 54 kHz frame rate (18.5 μ s frame exposure time).

Ruthenium in water and glycerol mixtures

- 4 solutions: 100%, 50%, 20% and 0% glycerol mixed with water
- 54 kHz frame rate, 2.6 s
- Decay for each pixel of image
- Ru(dpp) lifetime contrast due to oxygen diffusion

Ruthenium in living HeLa cells

- Ru(dpp) in living HeLa cells
- 54 kHz frame rate, 1.3 s
- Average lifetime from 2-exp fit: 2.7 μs (+ fast component 0.1 μs)
 - ightarrow Partial protection from quenching by molecular oxygen

Iridium beads

- Beads mix: Ir(ppy)₃, Ir(BMes) phos, Ir(fppy)₃ phos, Pd(OEP), green fluorescence
- 54 kHz frame rate (18.5 μs frame exposure time)

Summary

- Image intensifier + ultrafast camera allows wide-field photon counting imaging.
- Time-resolution limited by camera frame rate to microseconds.
- Sub-exposure time resolution from image intensifier phosphor decay.
- Demonstrated with 18.5 μs exp time and sub-μs lifetimes (P20 phosphor).
- Faster phosphor and frame rate for nanosecond time resolution?

Acknowledgements

- Klaus Suhling
- Nicolas Sergent
- Zdeněk Petrášek (Max Planck Institute of Biochemistry, Germany)
- Andrew Beeby (Durham University) – Ir beads

Medical Research Council

 EPSRC loan pool (Adrian Walker) – camera loan

