акагаwа акаиала акагаwа акагаwа акагаwа акагаwа

7th International Conference on New Developments In Photodetection

" Development of a cylindrical tracking detector with multichannel scintillation fibers and PPD readout "

Yuya Akazawa

Tohoku University for the J-PARC E40 collaboration

Contents

- Motivation for development
 - Requirements
- Construction of Cylindrical Fiber Tracker
 - Fiber construction
 - PPD Read-out

Performance evaluation

- Response for cosmic ray and proton
- Linearity
- Energy resolution
- Summary

Σp scattering experiment

Σp scattering experiment @J-PARC , Japan ⇒⇒ ΣN interaction

Measurement of $d\sigma/d\Omega$ of Σp scattering with high statistics

X It is difficult to use Σ as a target or a beam

- ∵ lifetime (~10⁻¹⁰s)
- \Rightarrow need to produce Σ in a target

Σp scattering experiment

Σp scattering experiment @J-PARC , Japan ⇒⇒ ΣN interaction

Measurement of $d\sigma/d\Omega$ of Σp scattering with high statistics

акагаwа акагаwа

Σp scattering experiment

Σp scattering experiment @J-PARC , Japan ⇒⇒ ΣN interaction

Measurement of $d\sigma/d\Omega$ of Σp scattering with high statistics

акагаwа акагаwа

Σp scattering experiment

Σp scattering experiment @J-PARC , Japan ⇒⇒ ΣN interaction

Measurement of $d\sigma/d\Omega$ of Σp scattering with high statistics

Σp scattering experiment

Σp scattering experiment @J-PARC , Japan \Rightarrow ΣN interaction Measurement of <u>dσ/dΩ of Σp scattering</u> with <u>high statistics</u>

 \times It is difficult to use Σ as a target or a beam \therefore lifetime (~10⁻¹⁰s) \Rightarrow need to produce Σ in a target (1) Production $\pi^{\pm} + p \rightarrow \Sigma^{\pm} + K^{+}$ πBean (2) Scattering $\Sigma^{\pm} + p \rightarrow \Sigma^{\pm} + p'$ Liquid H₂ target Cylindrical Fiber Tracker(CFT) CFT Trajectory Energy deposit ⇒ PID **BGO** calorimeter **BGO** calorimeter Kinetic Energy

акагаwа акагаwа

Σp scattering experiment

Σp scattering experiment @J-PARC , Japan \Rightarrow ΣN interaction Measurement of <u>dσ/dΩ of Σp scattering</u> with <u>high statistics</u>

akazawa ak

Cylindrical Fiber Tracker

Requirements

- Energy resolution
 - 35% for 70MeV proton for 1 layer
- Angular resolution : σ_{μ} =0.77deg
- Surround the target
 - Cylindrical shape
 - Long active region · · · 400mm
- 2 types of fiber configurations
 - \Rightarrow Track finding 3 dimensionally
 - Φ layers (straight layer)
 - UV layers (spiral layer)

Energy deposit depends on the Mass $\downarrow \downarrow$ Resolve **proton** and **m**

akazawa ak

Cylindrical Fiber Tracker

Requirements

- Energy resolution
 - 35% for 70MeV proton for 1 layer
- Angular resolution : σ_{μ} =0.77deg
- Surround the target
 - Cylindrical shape
 - Long active region · · · 400mm
- 2 types of fiber configurations
 - \Rightarrow Track finding 3 dimensionally

Х

measure

"Φ"

- Φ layers (straight layer)
- UV layers (spiral layer)

Φ=∩°

layer

Х

and a second sec

Energy deposit depends on the Mass $\downarrow \downarrow$ Resolve **proton** and <u>**m**</u>

Some challenges to overcome for development of CFT

Fiber construction

- Special fiber configuration
- Many channel operation

Photon readout fiber by fiber

U-V layer get z position using " Φ "

akazawa akawaza akazawa akazawa akazawa akazawa akazawa

Contents

- Motivation for development
 - Requirements
- Construction of Cylindrical Fiber Tracker
 - Fiber construction
 - PPD Read-out
- Performance evaluation
 - Response for cosmic ray and proton
 - Linearity
 - Energy resolution
- Summary

Construction of CFT prototype

Construction of CFT prototype

akazawa akazawa akazawa akazawa akazawa akazawa

wa akazawa akazawa akawaza akazawa akazawa akazawa akazawa

Construction of CFT prototype

Readout ~photon sensor~

- Number of fiber : 1100 channel
- Photon sensor
 - : <u>MPPC</u> fiber by fiber
 - A circuit mounting **32 MPPCs**

Readout ~photon sensor~

- Number of fiber : 1100 channel
- Photon sensor

88888888

30mm

- : <u>MPPC</u> fiber by fiber
- A circuit mounting **32 MPPCs**

64mm

attach

MPPC

 $1 \times 1 \text{mm}^2$

Readout ~photon sensor~

- Number of fiber : 1100 channel
- Photon sensor

30mm

contact

spacer (rubber sheet) 0.8mm

- : <u>MPPC</u> fiber by fiber
- A circuit mounting **32 MPPCs**

fiber

64mm

ADC, TDC, bias adjustment etc...

Ref EASIROC chip : proceedings of NDIP 2011 Omega/IN2P3 EASIROC board : R. Honda PD12

akazawa akawaza akazawa akazawa akazawa akazawa

MPPC

MPPC operation

- For uniformity of MPPCs
 - Each MPPC's gain was adjusted by <u>changing bias voltage</u>.

EASIROC

20mV/bit, 0~4.5V

for each channel

- 1,100 MPPCs were adjusted.
- Operation voltage
 - Over Voltage ≈ 1.4V

Measurement of cosmic ray

Contents

- Motivation for development
 - Requirements
- Construction of Cylindrical Fiber Tracker
 - Fiber construction
 - PPD Read-out
- Performance evaluation
 - Response for cosmic ray and proton
 - Linearity
 - Energy resolution
- Summary

акагаwа акакаwа акагаwа акагаwа акагаwа акагаwа

Performance evaluation

Measurement of energy deposit

- Linearity
 - Between energy deposit and light yield
- Energy resolution
 - Require <u>σ/Mean = 35%</u> for 70MeV proton for 1 layer in order to resolve proton and pion with 4σ

Performance evaluation for proton

Test experiment in CYRIC

 pp scattering experiment
<u>80MeV</u> proton beam from cyclotron @CYRIC in Tohoku Univ.

акагаwа акаиала акагаwа акагаwа акагаwа акагаwа

Performance evaluation for proton

Test experiment in CYRIC

 pp scattering experiment
<u>80MeV</u> proton beam from cyclotron @CYRIC in Tohoku Univ.

Ep is selected by θ

Linearity of light yield

Experimental data p.e.

compare Simulation Estimated energy deposit

акагаwа акагаwа

Energy resolution

- Resolution was worse than simulation. <-- to be calibrated for each channel
- Energy resolution of CFT = <u>28%</u> for 70MeV proton (dE = 0.7MeV) <u>satisfied our requirement</u> (35% for 70MeV)

雳

summary

- We plan to perform Σp scattering experiment at J-PARC <u>CFT(Cylindrical Fiber Tracker</u>) will measure the trajectory and the energy deposit
 - Construction a Prototype consists of 3 layers
 - Scintillation Fiber + MPPC
 - 2 straight layers +1 spiral layer ≈ 1,100 fibers
 - MPPCs which read each fiber were operated by EASIROC board
 - Performance evaluation
 - Measured cosmic ray and pp scattering
 - Cosmic-ray ••• Mean detected photon number = 19 p.e.
 - Linearity ••• MPPC saturated in high energy deposit region.
 - Effective pixel number of MPPC = **<u>197pixels</u>**

 \Leftrightarrow consistent with fiber covering area

- Energy resolution
 - worse than that of simulation \leftarrow to be improved
 - σ /Mean = 28% for 70MeV proton(dE=4.7MeV)

satisfied our requirement

Back up

To improve the energy resolution

- Calibration method
 - Response function
 - Layer by layer (now)

contain the effect of the deviation of MPPC' gain

> ⇒⇒ <u>fiber by fiber</u>

Energy resolution should be improved.

- Expand MPPC effective area
 - Inserting a spacer between fiber and MPPC
 - MPPC saturation will become weaker.
- etc...

fibe

Spacer

akazawa akawaza akazawa akazawa akazawa akazawa

fiber

MPPC

A design of actual type

Actual detectors

- The design have almost finished
- Just now constructing

•BGO calorimeter •••

BGO

4 Φ layers,4 U•V layers 24 BGO(30×25×400mm³) ~5,000 fibers will be placed cylindrically

- Number of photon is sufficient
- Position dependence

 \Rightarrow suggest that there were some space between some fibers

Linearity of light yield

• Linearity between energy deposit(simulation) and p.e.(actually detected)

