

Towards a new generation of photodetectors: the VSiPMT

F.C.T. Barbato

Università degli studi di Napoli Federico II INFN Napoli

Our project: SiPM surface increase

Vacuum Silicon PhotoMultiplier Tube (VSiPMT)

An innovative design for a modern hybrid photodetector based on the combination of a Silicon PhotoMultiplier (SiPM) with a hemispherical vacuum glass PMT standard envelope

Introduction

MAIN IDEA: SiPM as electron multiplier

THE BEGINNIG: test with an electron beam

Experimental setup at TTT3-Accelerator of Naples: an electron beam was extracted to test a special SiPM as

The prototypes

 $p^+n_Vn^+$ configuration, special non-windowed series for ε optimization. Lower voltage required wrt standard $n^+p_\pi p^+$ devices (-2,5/3 kV expected).

<u>No voltage divider:</u> no power dissipation nor complicated circuits to reduce the dissipation Only a very simple amplifier is required (typ. < 5mW).

Amplification

Single-state amplifiers based on an OP-AMP in non inverting configuration.

Waveforms

Efficiency

VSiPMT (ZJ5025) Operating Point

Efficiency is highly stable over 3200 V. No need for high voltage stabilization.

• Reducing the SiO₂ coating layer it will be possible to reach the plateau region at even lower voltages.

Photocathode XY scan

Homogeneous efficiency ≈ 0.2 over a 7mm² surface

Transit Time Spread

Dark count

Decisively looks like a weak point

High DC rates 100 – 1000 kcps

Dark Count Rate (ZJ4991)

Dark count

New generation Hamamatsu MPPCs

Afterpulses

SiPM internal afterpulses

NOW: <10% NEW GENERATION OF SiPM: <0.3%

Ionization of residual gases

Residual gases afterpulse time distribution

Arrival time distribution and intensity as a function of HV

HV (kV)	Delay (ns)	Intensity (pe)
2	52.8	10-25
3	43.6	18-70
4	38.4	22-80

GAS RESIDUAL MOLECULE IONIZATION EFFECT

PMT vs VSIPMT

Features	РМТ	VSiPMT	Comparison
Efficiency	$QE_{photocathode} x \epsilon_{1dynode(0.8)}$	$QE_{photocathode}x FillFactor_{(twd 1)}$	≈equivalent
Gain	10 ⁶ - 10 ⁷	10 ⁵ - 10 ⁶	PMT
Timing	ns	Fraction of ns (no dynode spread)	VSiPMT
Linearity	Depending on gain	Depending on #cells	≈equivalent
Power Consumption	Divider Dissipation	VSiPMT: No dissipation Amp. (G=10-20): <5mW	VSiPMT
Power Supply Stability	HV Stabilization	LV easy stabilization	VSiPMT
Dark counts rate (new)	≈ kHz @ 0.5pe	≈ few kHz @0.5pe	≈equivalent (today)
Photon Counting	Difficult	Excellent	VSiPMT
Afterpulse (new)	≈10% @0.5pe	<0,3% @0.5pe	VSiPMT (today)
Peak-to-valley ratio	≈3	>60	VSiPMT

Conclusions and Perspectives

VSiPMT is an innovative design for a modern hybrid photodetector based on the combination of a Silicon PhotoMultiplier (SiPM) with a Vacuum PMT standard envelope

It has many **UNPRECEDENTED** features, such as:

- Photon counting capability;
- Low power consumption;
- Large sensitive surface;
- Excellent timing performances (low TTS);
- High stability (not depending on HV).

making it a very attractive solution in many applications

- New generation of Hamamatsu MPPCs:
- sensibly lower afterpulse rates;
- lower noise: much reduced dark counts;
- higher gain → no amplification required;
- focusing optimization required.

Thanks for your attention

See you at the Chenonceau Castle

Backup Slides

Differences between HAPD and VSiPMT

Dark count rates

Linearity

• G-APD:

linearity strongly related to the total number of pixels.

• focusing:

linearity is maximized if for a photocathode uniformly illuminated all pixels are hit by the accelerated photoelectrons.

Differently from the cases of a PMT or an HPD, a too strong focusing would be deleterious because a too squeezed photoelectron spot means that not all pixels are involved, thus drastically reducing the linearity.

Linearity

Linearity

Proposed solution

First focusing ring: time alignment of all possible electrons paths; Second and third focusing rings: fine tuning of the electron beam focusing

Proposed solution

First focusing ring: time alignment of all possible electrons paths; Second and third focusing rings: fine tuning of the electron beam focusing

