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INTRODUCTION 

System overview: MCP detector, readout & analogue electronics. 
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Electron cascade through Microchannel Plate and electron cloud incident on 
readout anode for measurement. 

MCP stack run in high gain, saturated, mode. >106 electrons. 



INTRODUCTION 

Charge division - Charge centroid centre of gravity encodes the 2-D coordinate of the 
event. Dividing charge among a small number of instrumented nodes. Charge 
amplitudes are measured and an algorithm used to decode event position coordinate. 
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Several methods can be used to divide the charge amongst the measurement nodes: 

• Resistive 

• Geometric 

• Capacitive division 



INTRODUCTION: Resistive division 
• Resistive anode, popular technique. 

• Event charge cloud collected on resistive sheet ~10 kΩ to 1 MΩ per square. 

• Charge resistively divided amongst four perimeter contacts, electronically measured 
and event coordinate calculated using an algorithm such as:  

 

• Ground based and space based applications; the RANICON, ROSAT WFC and EXOSAT 
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• Resolution dominated by two noise 
components; resistive thermal noise or 
'Johnson' noise & pre-amplifier noise.  

 Limits resolution to several tens of μm. 

Timing restricted (RC). 
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INTRODUCTION: Geometric division 
• E.g. wedge and strip anode (WSA). Small number of interleaved conductive 
electrodes to collect the charge. Modulation of the electrode areas to charge ratio. 

• Inherently faster than resistive (conductive electrodes). 

• Interleaved nature can cause a) higher electrode resistance b) high inter-electrode 
capacitance (more noise) c) dynamic image drifts due to redistribution of SE. 

 

Examples: 

• Wedge Strip Anode 

• Vernier Anode 

• Tetra Wedge Anode 
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Lapington (1986) 



INTRODUCTION:  
    A note on Image Charge......... 
• Charge cloud is collected on a passive resistive 
anode coupled to a conductive readout such as 
a WSA via a dielectric substrate. 

• Resistive layer physically localises the charge 
while the readout detects the signal transient 
induced through the dielectric. 

• Signal charge slowly leaks away through the 
resistive layer. 

• Removes SE redistribution, constant charge 
footprint, avoids the partition noise. 

• Allows readout to be operated at ground 
irrespective of the detector anode voltage. 
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INTRODUCTION: Capacitive division 
• Capacitive division experimentally demonstrated before. Gott(1970); 2-D square 

array via wires to an separate capacitor network . Smith(1988); array of 1-D strip 
electrodes to charge share. Drawbacks; discrete capacitors, parasitic capacitance, 
bulky, engineering complexity. 

Development of a capacitive division readout: 

Capacitive Division Image Readout (C-DIR) 

• 2-D array of isolated electrodes which divide the signal via 
their mutual capacitance to four measurement nodes at 
four corners of the readout.  
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DESIGN, SIMULATION AND MANUFACTURE: C-DIR 

• RC time constant has no influence on the transient signal. 

• SE redistribution of the primary event charge occurs but its footprint is symmetric, 
stable and predictable. 

Stage 1: Resistive Anode 
• Charge collected by the resistive anode 

(electrodes do not need to be 
resistively coupled). 

• Resistive layer localizes charge, signal 
transient couples through dielectric. 
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DESIGN, SIMULATION AND MANUFACTURE: C-DIR 

• Acts as the rear vacuum vessel wall, readout completely outside the vacuum 
environment, no feedthroughs required. 

• Only resistive layer connection, through perimeter via its metallic support flange. 

 

Stage 2: Dielectric Substrate 
• Alumina dielectric layer (typ. 2 mm 

thick) supports the RA (thickness 
defines footprint). 

• Stands off detector high voltage. 
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DESIGN, SIMULATION AND MANUFACTURE: C-DIR 

• Intrinsic capacitance array minimizes parasitic capacitance, <noise, >resolution. 

• Minimize dominant parasitic capacitance (MCP output face) to <10% by detector 
geometry and dielectric choice. 

• Array capacitance small => preamplifier input load <5 pF (25 mm2) (cf. 40-70 pF 
comparable WSA). 

• Capacitive signal chain: Very high bandwidth, extract position & event time 
resolution in the sub-100 ps range. 

• ......more 

Stage 3: Readout 
• Simple passive, multilayer PCB 

• Matrix of isolated electrodes, 
geometry defines the mutual 
capacitances. 

• Signal charge induced is capacitively 
shared among the four charge 
measurement nodes. 
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DESIGN, SIMULATION AND MANUFACTURE: C-DIR 

• Outside the vacuum (hermetically sealed from sensitive internals) => readout 
requires standard PCB materials and manufacturing techniques => low risk and 
economical. 

...Stage 3 cont: Readout 
• Exploits full dynamic range of all 4 

electrodes (cf. WSA <33% of the 
signal). 

• Predictability of footprint distribution 
allows precision optimization of 
readout electrode array pitch and 
linearity control. 
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DESIGN, SIMULATION AND MANUFACTURE: C-DIR 

Manufacture 
• Resistive layer; thick film screen printing technology. 

• Robust alumina dielectric substrate. 

• Conventional PCB readout. 

• C-DIR; simple surface contact with the rear face of the alumina dielectric. 

Overall 
• C-DIR components manufactured using 

robust, well characterized, radiation-
hard materials. 
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DESIGN, SIMULATION AND MANUFACTURE: C-DIR 

• Optimized 25 mm active area C-DIR. 

• Comprises three layers of isolated conductors 
separated by thin insulator. 

• Overlap between conductors on adjacent layers 
defines the mutual capacitances. 

• Only 10 pattern pitches (2.54 mm); sharing of the 
induced signal between multiple electrodes => 
centroid footprint. 
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• Original design analogous to resistive anode; 
uniform low value capacitive coupling surrounded 
by perimeter of higher capacitance (for linearity) 
achieved by modulating the area of the perimeter 
electrodes. 
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DESIGN, SIMULATION AND MANUFACTURE: C-DIR 

Advantage summary: 
• Capacitive nature avoids partition noise (physical collection of quantized charge 

carriers). 

• Avoids serial resistive noise. 

• DC signal discharge current (resistive anode) has no influence on the readout 
signal timescales. 

• Dominant remaining noise; capacitive load on each preamplifier is very low. 

• Pattern-edge geometry optimization => ~90% linear dynamic range. 

• Resulting spatial resolution >2000 x 2000 pixel2 (using ultra low noise 
electronics). 
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EXPERIMENTS AND RESULTS 
• Prototype C-DIR device; PCB, double-sided array 

of conductive square pads, 2.54 mm pitch. 

• Pinhole array mask image (25 µm & central 50 µm 
diameter pinholes). 

 Spatial resolution 150 µm FWHM @ ~106 
electrons. 

• Proved concept, measured performance limited: 
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 Signal loss to the rear MCP contact by 
parasitic capacitance. 

 Coaxial cable to the CSP =>dominant 
capacitive load. 

 Optical broadening of image on detector PC 
(source collimation and diffraction). 



EXPERIMENTS AND RESULTS: Adaptive electronics 
• Investigated variety of configurations of charge measurement electronics. 

• Can utilise traditional pulse processing designs (resistive anode, WAS anode, etc.). 

• Exploit extended spatial resolution/maximum-count-rate envelope: 

 Use high speed digitisation & adaptive digital filtering (req. ESA JUICE 
mission). 

 Trade-off between overall count rate and spatial resolution to be dynamically 
selected to suit science requirements. 

• Developed demo laboratory system: 

 C-DIR & MCP close-coupled. 

 Amptek A250 & A275 optimised for high 
rate or high spatial resolution imaging. 
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EXPERIMENTS AND RESULTS: Adaptive pulse shaping 
• Investigating various filtering schemes digitally encoded (Moving Window 

Deconvolution , pseudo Gaussian, CR-RCn). Adaptability to count rate. 
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EXPERIMENTS AND RESULTS: 
• First imaging results: Aperture, pinhole & array, slit, 

diffraction and various other photon counting test images. 
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EXPERIMENTS AND RESULTS: 
• Optimised 25 mm C-DIR design. 

• Collimated light source to pinhole array mask 
on detector (25 µm & central 50 µm pinholes). 

• Measured electronic noise & detector 
resolution. 

Dotted lines are adjusted
for pinhole broadening 
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• Measured pinhole width image controlled by: 

› 50 µm diameter of the pinhole. 

› Collimator pinhole in front of the LED source. 

› Distance of the mask from PC (window 
thickness). 

› Diffraction (mask pinhole size at the LED λ). 

› Proximity focus broadening PC & MCP. 

› Centroiding errors within the MCP stack. 

› Electronic noise (CME). 

Measured electronic noise equates to 7.7 μm at 4.3 x 106 electrons 
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EXPERIMENTS AND RESULTS: 

• Translating into spatial resolution is proving 
challenging: 

› Low noise amplifiers difficult to reproduce 
manufacturers specification of 200 e-RMS 

› Hot spot on sealed tube MCP causing high 
background limiting signal 

› Temperature response of MCP plates 

› Optical path influences 

› Unipolar signal increasing pulse pileup 
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Measured electronic noise equates to 7.7 μm at 4.3 x 106 electrons. 
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CONCLUSIONS 

C-DIR: Capacitive Division Image Readout 

• Device is a simple, low cost, easily manufactured. 

• Centroiding readout device, only four electronic channels. 

• Offers significant performance and operational advantages. 

• Imaging performance dominated by electronic noise. 

• Low capacitive load, potential resolution of 10 µm FWHM at a gain of ~ 3 × 106 
electrons. 

• Combined imaging and event timing sub 100 ps, close to the limit of the MCP 
itself. 

Thank you for listening 

Contact: Steven Leach, sal41@le.ac.uk 

www.physicsresearch.co.uk 
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FUTURE IMPROVEMENTS: 

 Re-visiting grounding plate of FEE circuit 

 Use new bare MCP in vacuum chamber 

 Use direct UV, no PC focussing issue 

 Expand dynamic range of FEE 

 Optimise shaping time 

 Rev2 to linearise C-DIR 

S Leach. 4th July, NDIP 2014.    23 



REFERENCES 
Thank you for listening. 

Presenter: Steven Leach 

Space Research Centre, University of Leicester, UK 

 

For references please see: 

The Capacitive Division Image Readout: A Novel Imaging Device for 

Microchannel Plate Detectors: Lapington NDIP 2014 8859 - 32. 

S Leach. 4th July, NDIP 2014.    24 



EXPERIMENTS: High speed electronics 

Another electronic approach:  

• Exploit ~30 ps event timing of MCP (purely capacitive design, no resistive elements 
in signal path) => nanosecond shaping times. 

• High speed charge measurement => imaging & sub-100 ps event time resolution. 

• Count rate capability in the 10 MHz range. 

• Applications requiring fast event timing (wide-field fluorescent lifetime imaging) . 

• Multi-channel NINO amplifier/discriminator ASIC 
developed at CERN for the ALICE time-of-flight 
subsystem. 

• High Performance Time to Digital Convertor 
(HPTDC) ASIC (CERN). 

• Combined uses time-over-threshold (TOT) 
technique for event timing correction =>25 ps. 

Results and more in paper 8859-32. (Extra...) 
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EXTRA..Prototype 
• Prototype C-DIR device; PCB, double-sided array 

of conductive square pads, 2.54 mm pitch. 

• Perimeter capacitance achieved with surface 
mount capacitors. 

• Pinhole array mask image (25 µm & central 50 µm 
diameter pinholes). 

• Proved concept, measured performance limited: 
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 Signal loss to the rear MCP contact by 
parasitic capacitance. 

 Coaxial cable to the CSP =>dominant 
capacitive load. 

 Optical broadening of image on detector PC 
(source collimation and diffraction). 

Spatial resolution 150 µm FWHM @ 
~106 electrons. 



Extra....C-DIR alternate design 
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• Alternate design; x and y axes are encoded separately. 

• All mutual capacitances define perfect linear dividers; no need for large 
perimeter capacitances. 

• Each axis only benefits from half signal which impacts signal to noise ratio. 
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Extra....Experimental optical setup 
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Tube (1.05 m length, 22 mm diameter) 
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