DE LA RECHERCHE À L'INDUSTRIE

SPADnet a Digital Silicon PhotoMultiplier for Positron Emission Tomography: presentation and characterization

Eric Gros d'Aillon, CEA-LETI

eric.grosdaillon@cea.fr

www.spadnet.eu

L. Maingault¹, <u>E. Gros d'Aillon^{*,1}</u>, L. André¹, L. Verger¹, E. Charbon², C. Bruschini³, C. Veerappan², D. Stoppa⁴, N. Massari⁴, M. Perenzoni⁴, L. H. C. Braga⁴, L. Gasparini⁴, R. K. Henderson⁵, R. Walker⁵, S. East⁶, L. Grant⁶, B. Jatekos⁷, E. Lorincz⁷, F. Ujhelyi⁷, P. Major⁸, Z. Papp⁸, and G. Nemeth⁸

1- CEA-Leti, MINATEC Campus,Recherche Technologique, F 38054 Grenoble, France 2- Delft University of Technology, Delft, The Netherlands 3- EPFL, Lausanne, Switzerland

4- Smart Optical Sensors and Interfaces (SOI) Group, Fondazione Bruno Kessler (FBK), Trento, Italy 5-CMOS Sensors and Systems (CSS) Group, School of Engineering, The University of Edinburgh, Edinburgh, United Kingdom.

6-Imaging Division, STMicroelectronics, Edinburgh, United Kingdom 7- Budapest University of Technology and Economics, Department of Atomic Physics, Budapest, HU 8- Mediso Orvosi Berendezes Fejleszto es Szerviz Kft. (Mediso Ltd.),HU

Mediso

Positron Emission Tomography

- Functional imaging of radio-isotope which emit a positron.
- Positron and electron annihilate. Two 511keV gamma photons are emitted in coincidence at 180°.
- Mainly used for oncology.

The SPADnet Concept

Photonic Component, comprising:

- Scintillator (LYSO)
- Sensor (SiPM)
- Network (Gbps) Scalable, modular System
 FOCUS OF THIS TALK
 DETECTOR COMMUNICATION

DE LA RECHERCHE À L'INDUSTRIE

The sensor

Sensor Requirements for PET

- We want to build of large format, compact, MRI compatible sensor capable of TOF-PET
- We need to measure for each gamma-ray:
 - Position Of Interaction
 - Energy
 - Time of arrival
- Proposed solution: a fast sensor sensitive to a few photons in CMOS technology
 - Small pixels → Improve spatial resolution
 - Embedded Time to Digital Converters → Time stamp more than one visible photon
 - Real-time energy output → Provide scintillation decay time information
 - Through-Silicon-Via based packaging \rightarrow Extensible to large format

Silicon Photomultiplier (SiPM)

- SiPM : array of Single-Photon Avalanche Diodes (SPADs)
- Each SPAD is a photodiode operating in Geiger mode
 - The number of fired SPADs is proportional to the number of incident photons
- Particularity of CMOS based SiPM
 - Digitization of the photon
 - Advanced functions could be embedded

SPADnet Pixel Architecture

- 0.57×0.61mm pixel
- 2 x 2 mini-SiPMs (Braga et al., NSS2011)
- 720 SPADs (Walker et al., NSS 2012)
- 1 active TDC
- 43% array fill factor

For more details, see Braga et al., ISSCC 2013 and Walker et al. IISW 2013

Discriminating gamma event

- The chip is an array of 8x16 pixels
- Fast readout of the counted photons
- Integration is triggered by comparing the photon flux to a threshold

leti

8

Characterization

1 – SPADs Dark Count Rate Dead Time Photon Detection Probability

2 – Sensor

Gamma spectra Coincidence Timing Resolution

Dark Count Rate

- Selecting one SPAD per pixel at a time
- At 23 °C and 1.5V excess bias : median DCR = 330 Hz
- Noisy SPADs could be disabled
- DCR double every 15°C

80

90 100

1E+7

00

-5 -10

-15

-20

 \sim

SPAD Dead Time

- Count with respect to the photon flux
- Deadtime : 50ns. Paralysable behaviour

Photon Detection Probability

- Selecting one SPAD per pixel at a time
- Peak SPAD PDP 32% at 450 nm at 20 °C and 1.5V excess bias (incl. afterpulse)

PDP histogram (at 450nm)

With respect to wavelength

PAGE 13 © CEA. All rights reserved

Gamma measurements

- Single 3.5x3.5x20 mm³ LYSO crystal (clinical) on 9.8x4.6mm² active area
- Teflon wrapped. Optical grease coupled.
- Room temperature. No stabilization. 1.5 V excess bias

Picture of a Gamma Event

250

0

500

Energy (keV)

DE LA RECHERCHE À L'INDUSTRIE

NDIP 2014, Tours, July 4 2014 - E. Gros d'Aillon

0-

Ó 100 200 300 400 500 600

Energy (keV)

700

800

900 1000

1250

1500

PAGE 16 © CEA. All rights reserved

20°C

1.5V excess bias

80% SPAD enabled

Gamma Spectra

Coincidence Resolution Time

20°C 1.5V excess bias 80% SPAD enabled

- Single 3.5x3.5x20 mm³ LYSO crystal (clinical) on 9.8x4.6mm² active area
- 128 TDCs per chips enable multi-timestamp processing
- Best CRT in this experiment : 530 ps FWHM
- 288 ps obtained by Braga et al. using smaller LYSO crystals (IEEE Nucl. Sci. Symp. Conf. Rec 2013).

Gamma measurements

- LYSO matrix with 35x35 pixels and 1.3mm pitch, and optical separator, 13 mm thick (preclinical) on 9.8x4.6mm² active area. Optical grease coupled. GORE[®] Diffuse Reflector. No alignment with pixels.
- Room temperature. No stabilization. 1.5V excess bias

Non-collimated punctual Na source

1 MBq, 10cm

Small needle matrix

Post processing : Filtering noise (5 count) + centroïd

NDIP 2014, Tours, Ju

One 511 keV event spind to the second second

- ightarrow LYSO needles are clearly resolved
- \rightarrow (overflow at edges)

- SPADnet is a 4 sides tileable Gamma sensor in CMOS technology
- 8 x 16 pixels, 0.6 mm pitch, 92k SPAD
- TDCs and event discriminator embedded.

- SPADnet is a 4 sides tileable Gamma sensor in CMOS technology
- 8 x 16 pixels, 0.6 mm pitch, 92k SPAD
- TDCs and event discriminator embedded.
- Future steps :
 - Optical Concentrators to recovers SPADs fill factor loss

- SPADnet is a 4 sides tileable Gamma sensor in CMOS technology
- 8 x 16 pixels, 0.6 mm pitch, 92k SPAD
- TDCs and event discriminator embedded.
- Future steps :
 - Optical Concentrators to recovers SPADs fill factor loss
 - Tile the chips to build a larger area

- SPADnet is a 4 sides tileable Gamma sensor in CMOS technology
- 8 x 16 pixels, 0.6 mm pitch, 92k SPAD
- TDCs and event discriminator embedded.
- Future steps :
 - Optical Concentrators to recovers SPADs fill factor loss
 - Tile the chips to build a larger area
 - Integrate into a PET ring

- SPADnet is a 4 sides tileable Gamma sensor in CMOS technology
- 8 x 16 pixels, 0.6 mm pitch, 92k SPAD
- TDCs and event discriminator embedded.
- Future steps :
 - Optical Concentrators to recovers SPADs fill factor loss
 - Tile the chips to build a larger area
 - Integrate into a PET ring
 - Second version of the SPADnet chip. 9.8 x 9.8 mm², higher fill factor

ein,

LABORATOIRE D'ÉLECTRONIQUE **ET DE TECHNOLOGIES DEL'INFORMATION**

www.leti.fr

Thanks for your attention

