

Compound Semiconductor SPAD

7/4/2014

Eric S. Harmon, Ph.D. CTO harmon@lightspintech.com 508-809-9052

James T. Hyland, Ph.D.

Michael Naydenkov, Ph.D.

Light Spin Technologies, Inc.

- Company founded 2001
- Developing optoelectronics:
 - Highly integrated Compound semiconductors: Single photon detector arrays (UV-VIS-NIR) High gain detectors (UV-VIS-NIR-SWIR)
 - Light Modulators

Outline

- SPAD figures of merit
- Quenching Circuits
- Experimental Data

Why Compound Semiconductors?

- Conventional Wisdom:
 - Compound Semiconductors for NIR/SWIR \rightarrow InGaAsP
 - Silicon for wavelengths < 900 nm
 - Nitrides or SiC for wavelengths < 400 nm
- Silicon?

Advantages

- + lowest cost
- + highest materials quality
- + high integration levels

Disadvantages

- indirect band gap
- avalanche characteristics?
- radiation hardness
- Need a way to compare SPAD performance across materials/device technologies

Figure of Merit: $F(\lambda,T)$ Effective dark count rate/area at 100% DE, 300K

Figure of Merit

$F(\lambda,T_0) = DCR(T_0) / DE(\lambda) / Area$

- Scale Dark Count Rate to 300K
- Assume DE independent of temperature
- Provides means to compare SPADs constructed with different semiconductors
- Result is effective dark count rate at 100% detection efficiency, normalized to the detector area

SPAD Figure of Merit: $F(\lambda,T)$

• $F(\lambda,T) = DCR(T) / DE(\lambda,T) / Area$

- $\lambda =$ wavelength
- T = operating temperature
- DCR(T) = dark count rate at temperature T
- $DE(\lambda,T) =$ single photon detection efficiency
- Area = area of device
- For experimental devices, $F(\lambda,T)$ can be evaluated directly:
 - Depends on wavelength and temperature
 - Would like to scale to $F(\lambda, T_0)$.
- DCR(T) = can be estimated (next slide)
- Assume $DE(\lambda,T) \approx DE(\lambda)$:
 - Second order effects assumed negligible: band gap, after-pulsing, dead time, etc.

SPAD Figure of Merit: DCR(T)

• $DCR(T) = C \times DE \times G-R(T)$

- C is a constant describing fill factor
- G-R(T) is the thermal generation rate
- **G-R(T)** \approx (n_i / τ_{SRH}) × (Area × W)
 - n_i is the intrinsic carrier concentration: $n_i = (N_V \times N_C)^{0.5} \times \exp[E_G(T) / (2 \times k_B T)]$:
 - $\Box N_V$ is the valence band density of states
 - $\Box N_C$ is the conduction band density of states
 - $\Box E_G$ is the band gap
 - $\Box k_B$ is Boltzman's constant
 - τ_{SRH} is the thermal generation lifetime
 - W is the thickness of the depletion region in the device

pin Technologies, nc. **Jight**

Experimental $F(\lambda,T)$

Device	Semiconductor	Wavelength	DE	DCR	Т	Area	$F(\lambda_C, T=300K)$
	material	$(\lambda_{\mathbf{C}})$	(%)	(cps)	(K)	(mm ²)	cps/mm ²
PLI NFAD1 ¹	InGaAs	1650	10	35	193	0.00038	1.4E10
PLI NFAD2 ¹	InGaAs	1650	8	40	193	0.00080	9.6E9
Ge on Si ²	Ge	1300	4	2.5E8	200	0.00071	2.8E16
PLI 1.064 μm array ³	InGaAsP	1243	37.2	2000	253	0.00091	4.4E8
Excelitas Silk ⁴	Si	1030	10	200	263	0.025	7.4E5
Hamamatsu MPPC ⁵	Si	900	3	1E6	298	1.0	3.7E6
LightSpin GaAs PMC	GaAs	890	5	2.0E7	295	0.75	3.0E8
Hamamatsu PMT6	GaAs	880	12	125	273	19.6	1.2E3
SensL SiPM ⁷	Si	800	5	1E7	294	9.0	3.8E7
LightSpin GalnP PMC	GaInP	635	30	1.3E7	295	1.5	7.1E7
GaN ⁸	GaN	380	9	1E6	300	0.000624	1.8E10
4H-SiC ⁹	4H-SiC	320	10	5E4	300	0.049	1.0E7

References

- 1. Yan, Z., Hamel, D. R., Heinrichs, A. K., Jiang, X., Itzler, M. A. and Jennewein, T. "An ultra low noise telecom wavelength free running single photon detector using negative feedback avalanche diode," Rev. Sci. Instrum., v. 83, paper 073105 (2012)
- 2. Lu, Z., Kang, Y., Hu, C., Zhou, Q., Liu, H-D and Campbell, J. C., "Geiger-Mode Operation of Ge-on-Si Avalanche Photodiodes," IEEE J. Quantum Electronics. V. 47(5) Pp 731 735 (2011)
- 3. Entwistle, M., Itzler, M. A., Chen, J., Owens, M., Patel, K., Jiang, X., Slomkowski. K. and Rangwala, S.. "Geiger-mode APD Camera System for Single Photon 3-D LADAR Imaging," Proc. SPIE v. 8375, paper 83750D (2012).
- 4. Bérard, P., Couture, M., Deschamps, P., Laforce, F. and Dautet, H., "Characterization study of a new UV SiPM with low dark count rate", New Developments in Photon Detection, Lyon, France, July 4 8, 2011
- 5. Hamamatsu part # S12572, <u>http://www.hamamatsu.com/resources/pdf/ssd/s12572-025_etc_kapd1043e03.pdf</u>
- 6. Hamamatsu part # H7421-50, <u>http://www.hamamatsu.com/resources/pdf/etd/m-h7421e.pdf</u>
- 7. M series: <u>http://www.sensl.com/downloads/ds/DS-MicroMseries.pdf</u>
- 8. Cieck, E., Vashaei, Z., McClintock, R., Bayram, C., Razeghi, M. "Geiger-more operation of ultraviolet avalanche photodiodes grown on sapphire and free-standing GaN substrates," Appl. Phys. Lett. v. 96, paper. 261107 (2010)
- 9. Bai, X., Liu, H-D, McIntosh, D. C., and Campbell, J. C."High-Detectivity and High-Single-Photon-Detection-Efficiency 4H-SiC Avalanche Photodiodes," IEEE J. Quantum Electronics v. 45(3) Pp. 300 -- 303 (2009)

Figure of Merit

Dark Count Rate/DE (cps/mm²)

Radiation Hardness?

- $\tau_{SRH(\Phi)} = 1/(K \times \Phi)$
- G- $R(\Phi) = n_i / \tau_{SRH(\Phi)} \times (Area \times W) = n_i \times K \times \Phi \times (Area \times W)$ × W)
- Where:
 - K is the lifetime radiation damage factor
 - Φ is the radiation flux

Non-Ionizing Energy Loss

Radiation Hardness GaAs vs. silicon

Radiation Hardness GalnP vs. silicon

Experimental Results: GaAs Photomultiplier Chips™

Light Spin Technologies, Inc.

Single GaAs SPADs: fast passive quench

 Measurement bandwidth limited (2 – 2.5 GHz): estimate actual rise time is 97 – 140 psec

Ight Spin Technologies, Inc.

GaAs Photomultiplier Chip™

Light Spin Technologies, Inc.

I-V curves 1.0E-02 1.0E+06 1.0E-03 1.0E+05 • 0.5 × 1.5 mm² 1.0E-04 1.0E+04 270 SPADs • Z 1.0E-05 1.0E+03 Current ain 1.0E-06 1.0E+02 (7 1.0E-07 1.0E+01 Gain -﴾ 1.0E-08 1.0E+00 Light 1.0E-09 1.0E-01 ← Dark 1.0E-10 1.0E-02 -60 -50 -40 -30 -20 BIAS [V]

Light Spin Technologies, Inc.

Photon Number resolving

Light Spin Technologies, Inc.

Quantum Efficiency

Light Spin Technologies, Inc.

DE vs. DCR @ 770 nm

Iight Spin Technologies, Inc.

Experimental Results: GaInP Photomultiplier Chips™

75 mm wafer

4 mm x 4 mm PMC[™]

Iight Spin Technologies, Inc.

GalnP I-V

Light Spin Technologies, Inc.

GaInP Results

Quantum Efficiency

Iight Spin Technologies, Inc.

Detection Efficiency vs. DCR

Light Spin Technologies, Inc.

Preliminary Radiation Hardness

Summary

- FOM: Dark count rate at 100% detection efficiency, 300K
 DCR/DE gives the estimated dark count rate at 100% DE
 Scale by n_i(300K) / n_i(T) to adjust for measurement temperature
- GaAs and GaInP Photomultiplier Chips[™] projected to exhibit similar FOM to silicon
 - □ Measured devices are about 10X higher dark count rates
 - Demonstrated photon number resolving capability at 30% DE, 9 Mcps/mm²
 - Demonstrated sub nanosecond rise/fall times with fast passive quenching
 - □ Wider band gap semiconductors have the potential to exhibit very low dark count rates and substantially improved radiation hardness

Iight Spin Technologies, Inc.

Next Generation GalnP

