

Development of Deep-UV Sensitive MPPC for LXe Scintillation Detector

W. Ootani¹, K. Ieki¹, T. Iwamoto¹, D. Kaneko¹, R. Sawada¹, K. Sato², R. Yamada²

1: ICEPP, Univ. of Tokyo, 2: Hamamatsu Photonics K.K.

7th International Conference on New Developments In Photodetection (NDIP), 30 Jun-4 Jul Tours France

Contents

Introduction

MEG LXe Detector Upgrade with MPPC Readout

Performance of Deep-UV Sensitive MPPC

Summary and Prospects

Introduction

- Increasing use and interest in **liquid rare gas** such as **LXe** and **LAr** as a detector medium in many fields
- Technical difficulties

Ootani et al., "Development of Deep-UV Sensitive MPPC for LXe Scintillation Detector", NDJP201

>

- Operation at low temperature (LXe:165K, LAr: 87K).
- Detection of scintillation light in deep-UV range (LXe:~175nm, LAr:~128nm)
- Development of high performance photosensor sensitive to deep-UV light is a crucial demand.

3

 $52.8 MeV \gamma$

MEG LXe Detector

■ World's largest LXe (900 ℓ) scintillation detector to look for 52.8MeV- γ from $\mu \rightarrow e\gamma$

Scintillation Detector

"Development of Deep-UV Sensitive MPPC for LXe

Ootani et al.,

>

- Scintillation light (λ=175±5nm) collected by 846 UV-PMTs immersed in LXe
 - Hamamatsu R9869 (2-inch)
 - Operational in LXe (*T*=165K, *P*<0.3MPa)
- Excellent performance but with limited resolution due to nonuniform PMT coverage

UV-sensitive PM

2 inches

MEG LXe Detector Upgrade

Highly granular scintillation readout in LXe detector for MEG upgrade (MEG II)

Replace 216 × PMTs(2-inch) on γ-entrance face with ~4000 × MPPCs (12×12mm²)

Energy and position resolutions will be greatly improved (by a factor of two).

Ootani et al., "Development of Deep-UV Sensitive MPPC for LXe Scintillation Detector", NDNP2014,

>

γ-detection efficiency will also be improved by 10% because MPPC is much thinner than PMT.

Imaging power will significantly improve!

Deep-UV Sensitive MPPC

- Requirements
 - Photon detection efficiency (PDE) > 10-15%
 - **Large active area** $\sim 12 \times 12 \text{ mm}^2$
 - Good single photoelectron resolution
 - Fast signal (fall time < 50ns)</p>
 - How to improve deep-UV sensitivity
 - Remove protection coating
 - Optimise optical matching bw/ LXe and sensor (refractive index, AR coating)
 - Thin down contact layer
 - Large-area deep-UV sensitive MPPC has been successfully developed in collaboration with Hamamatsu Photonics.

Deep-UV Sensitive MPPC

- **First production model delivered** in March 2014
 - S10943-3186(X)
 - 600 sensors produced for prototype LXe detector
- Active area ~12×12mm²
 - Discrete array of four independent sensor chips, ~6×6mm² each)
 - To be operated as a single sensor by connecting 4 chips in series in external assembly PCB.
- 50µm pixel pitch

Ootani et al., "Development of Deep-UV Sensitive MPPC for LXe Scintillation Detector", NDJP201

>

- Metal quench resistor (only 20% change at LXe temp)
- After-pulse suppression
- VUV-transparent thin quartz window for protection (non-hermetic)
 7

Test Setup

LXe test facility at Paul Scherrer Institute (PSI) in Switzerland.

- 2l-LXe liquefied in small cryostat with pulse-tube refrigerator (Iwatani PDCo8)
- Blue LEDs for calibration
- Am-241 α-source for PDE measurement (=point-like light source)

Mounted inside cylinder with "VUV-black" coating to suppress reflection

Test Setup

LXe test facility at Paul Scherrer Institute (PSI) in Switzerland.

2l-LXe liquefied in small cryostat with pulse-tube refrigerator (Iwatani PDCo8)

Blue LEDs for calibration

Am-241 α-source for PDE measurement (=point-like light source)

Mounted inside cylinder with "VUV-black" coating to suppress reflection Stage for PDE measurement

PDE Measurement

Am-241 spot a-source on
tungsten wire ($^{\phi}$ 100µm, gold-
plated)A. Baldini et al., NIMA 565(2006)589

- Shadow effect (range of α in LXe ~40µm < wire diameter)
- Reflectivity on gold surface ~20%

PDE

- = (measured # of photoelectrons)/
 (expected # of photons)
- Vetoed events with shadow effect using signal from sensor on the other side
- PDE is measured individually for 4 segment chips on MPPC.

Performance

- **Single photoelectron peak clearly resolved** with large-area sensor (**12×12mm**²).
- This is made possible by

Ootani et al., "Development of Deep-UV Sensitive MPPC for LXe Scintillation Detector"

>

- Excellent cell-to-cell gain uniformity
- Extremely low dark count rate (~1Hz/mm²) at LXe temp. (×~10⁵ lower than at room temp.)

← all numbers are for $\Delta V=2.5V$

Performance

- Basic properties measured for individual chip
 - Gain >5×10⁵ (for single segment chip)
 - Dark count rate ~1 Hz/mm²
 - Correlated noise probability
 - After-pulsing: <10%</p>

W. Ootani et al., "Development of Deep-UV Sensitive MPPC for LXe Scintillation Detector", NDIP2014

Optical crosstalk ~35%

Performance

Excellent PDE (>15%) is achieved.

V. Ootani et al., "Development of Deep-UV Sensitive MPPC for LXe Scintillation Detector", NDIP2014,

Largest uncertainties (~10%) in estimation of expected # of photons impinging MPPC (geometrical acceptance, effect of reflection on surrounding materials)

Sensor Capacitance Issue

- Issues caused by large sensor capacitance ($\sim 5nF$) for large sensor area ($12 \times 12mm^2$)
 - Long signal tail (~150ns)
 - Higher noise

Ootani et al., "Development of Deep-UV Sensitive MPPC for LXe Scintillation Detector

>

- All segments are connected in series to reduce overall capacitance
 - Drawback: reduced gain
 - Series connection of multiple SiPMs has been proven to be useful already in other detectors.

A. Stoykov et al., NIMA 695(2012)202 W. Ootani et al., DOI 10.1016/j.nima.2013.07.043

Sensor segmentation (×4, 6×6mm² each)

Sensor Capacitance Issue

- Performance compared bw/ different segmentations.
- Signal fall time reduced down to 25-50ns with series connection
- Still reasonably high gain $(>2\times10^5)$

Scintillation Detector

MPPC for LXe

→ We decided to have 4 segments.

Sensor Capacitance Issue

Two options for series connection

	"Simple"	"Hybrid"
Bias	4×55 V ເອເຣ	55V (common) 😳
VBD uniformity	Automatic VBD equalisation 😳	Required 窉
Potential diff. bw/ adjacent segments	>55V (3)	0V <u>(</u>)
External circuit	No 😳	Required 🙁
High rate performance	Good 🙂	Not excellent, but OK

→ Both work at LXe temp.! "Hybrid" is more advantageous in our case. (Issues can be solved relatively easily.)

High Rate Performance

3.6kΩ

- Gain degradation at high rate environment observed especially for "hybrid" segment connection.
 - Caused by voltage drop in resistor(s) in series connection and bias line
 - ~0.8%/μA @R=10kΩ, C=10nF
 - N.B. leakage current w/o incident photons is negligibly small at LXe temp.
- Possible solutions
 - Optimising resistor and capacitor
 - Smaller resistance → voltage drop↓, but signal leakage to bias line
 - Signal leakage to bias line can be reduced with smaller capacitance.
 - **Simple series connection**

Mass Test at Room Temp.

- Mass test of 600 × MPPCs at room temp is under way before being installed in prototype LXe detector
- Basic properties (gain, V_{BD} , DCR, SPE resolution, ...) will be checked.

illation Detector", NDNP2014, Tou

17

Mass Test at Room Temp.

Mass test of 600 × MPPCs at room temp is under way before being installed in prototype LXe detector

Detector

Basic properties (gain, V_{BD}, DCR, SPE resolution, ...) will be checked.

Prototype Detector

- Prototype LXe detector (100l-LXe, 576×MPPCs, ~200×PMTs) will be constructed.
 - Mass test for 600 × MPPCs in LXe

Scintillation Detector

"Development of Deep-UV Sensitive MPPC for LXe

Ootani et al.,

- Mass test will start late summer.
- Demonstration of performance of the proposed LXe detector with high granular scintillation readout with MPPCs
 - Test beam experiment planned in next year.

Summary and Prospects

- Large-area deep-UV sensitive MPPC has been successfully developed for LXe scintillation detector.
 - First production model shows an excellent performance.
- Large sensor capacitance issue has been solved by a novel method with series-connected segments.
- Mass test is in progress at room temp. and later in LXe.
- Prototype LXe detector will be built to demonstrate the performance of the new LXe detector with high granular readout by MPPCs.
- Suppression of optical cross-talk is expected in the final production model (~4000 pcs) for the full-scale detector.
 - Prototype sensor will be tested late summer.
- This technology is expected to work also for LAr, although further optimisation of surface coating would be required.

Thank you for your attention!

20

Signal Transmission

. ا ع ا ا ا ا ا ا ا ا ا ا Gain MPPC signals in the final detector are supposed to be 1000 transmitted over long coaxial cable (~12m) without any 800 amplification. 600 **Effect of long cable is measured.** 400 No significant deterioration 200 of signal observed. 2 6 8 10 12 Cable Length [m] Signal fall time 60^{×10⁻⁹} Decay Constant [s] Planned electronics chain 50 Vacuum Cryostat x2 segmented feedthru 40 coax cable coax cable PCB (**3-5**m` (7m) DAO 30 MPPC board x4 segmented 20 10 0 2 6 10 12 4 8 21 Cable Length [m]

Vacuum Feedthrough

- PCB-based vacuum feedthrough is under development.
 - **PCB with coaxial-like signal line structure**
 - 50Ω impedance, good shielding, high bandwidth, small crosstalk (<0.3%)</p>
 - High density
 - **72ch in each PCB**
 - **G**×PCBs on each flange (DN160)
 - 10×flanges in total

Expected Detector Performance

Energy resolution

- **Uniform coverage with MPPCs** \rightarrow events near entrance face
- **I** Modified PMT layout → deep events
- **Low energy tail reduced because of smaller energy leakage**
- Position resolution
 - Higher granularity with MPPC
- **Efficiency**
 - **10% improvement (MPPC is much thinner than PMT)**

Expected Detector Performance

	Present	Upgrade
Energy (depth<2cm / depgh	2.4/1.7	1.1/1.0
Position (u/v/w)	5/5/6	2.6/2.2/5
Timing	67	76
Efficiency	63	69

resolutions in sigma

* 0.7% fluctuation added to MC σ ** Preliminary estimate

MPPC Package and Assembly

Assembly

Package design of MPPC

- Sensor chip mounted on ceramic base
- **Thin quartz window for protection**
- **Markov Assembly**
 - Sensor is plugged in socket pins on assembly PCB. (44 MPPCs on each PCB strip (~15×800mm²))
 - 93 PCB strips assembled on inner wall of cryostat
 - PCB has coaxial-like signal line structure

Radiation Hardness

- Modest radiation hardness is a kind of weak point of SiPM (MPPC).
- Possible effects
 - **Increase of dark noise**
 - **Gain degradation**

Expected radiation in MEG upgrade

	MEG upgrade (3 years)	Threshold
Neutron	7×10	2
Y	0.3Gy	200Gy

Radiation hardness of MPPC should NOT be an issue in MEG upgrade.

Other Issues

Dynamic range

- * # of p.e. expected in MEG LXe detector
 - 12000p.e on 12×12mm² sensor area (20% of N_{pixel})
 - * N.B.: time constant of scintillation emission of 45ns is comparable to cell recovery time.
- ★ → OK. Non-linearity can anyway be corrected by a careful calibration.

Radiation damage

- Irradiation foreseen at upgrade MEG
 - Neutron: <1.6×10⁸ n/cm² for 5-years operation
 - * γ: **0.6 Gy** for 5-years operation

Expected # of p.e.

Effect of neutron irradiation

Reflection on Si Surface

- Reflectivity of Si is high due to high imaginary refractive index.
- ~60% of incident light is reflected for VUV.
- Reflection can be reduced with anti-reflective coating.
 - * Need to be optimized for interface LXe/Si

