Silicon Carbide Solid-State Photomultiplier for UV Light Detection

Sergei Dolinsky, Stanislav Soloviev, Peter Sandvik , and Sabarni Palit

GE Global Research

Why Solid-State?

PMTs are sensitive to magnetic fields, have low quantum efficiency, are bulky and expensive. high voltage power supply and very short lifetime at elevated temperatures

Why UV?

- flame detection,
- biological and chemical detection,
- detection of jet engines and missile plumes
- Bio-aerosol detection
- Micro Flash Ladar for navigation
- Deep-UV Imaging
- Harsh-Environment UV and Gamma Detectors

Perkin Elmer Channel MP- series photomultiplier module

Hamamatsu Multiple Pixel Photon Counting (MPPC) array

parallel connection of individual GM-APD detectors comprising the array

Design of SiC SSPM

Why SiC?

Dark count rate in Si-PM increases rapidly with temperature, resulting in a maximum operating temperature below 50°C

SiC has larger bandgap (3.26 eV)

- Lower leakage current
- Higher operating Temperature
- Higher sensitivity in UV spectra

probability of thermally produce electronhole pairs in perfect crystal. <u>Theory</u>

Design of SiC SSPM

2-D distribution of electric filed at avalanche breakdown voltage

SEM images of fabricated SiC SSPM dies

Characterization of SiC SSPM

Packaged SiC SSPM

Active area: 4x4 mm² Pixel size: 60 um 16 sub arrays Area of sub-array: 1x1 mm²

Dark I-V curve at room temperature

Dark I-V curves vs. temperature at avalanche breakdown

Breakdown voltage vs. Temperature

Breakdown voltage changes with temperature 62 mV/°C

Block diagram of setup for optical measurements

Waveforms of output signal at room temperature

Slow component (~3 us) in the waveform depends on a value of quenching resistor

Impact of temperature on signal waveform

S.Dolinsky, GE Global Research

NDIP 2014, July 8, 2014

9

Temperature, °C

Single Photon Detection

Oscilloscope snapshot take at room temperature

The histograms suggest discrete nature of SiC SSPM output signal when illuminated by very low level light flux

Single Photon Detection Efficiency Measurements

$$PDE = \frac{\langle N_{fired} \rangle}{N_{ph}} = \frac{\langle N_{fired} \rangle h\nu \cdot f}{P_{opt} A_{SiC PM}}$$

Single Photoelectron spectrum recorded for SiC-PM with 256 pixels (1 mm²)

Each peak corresponds to a certain number of photoelectrons (ph.e).

 $N_{\rm fired}$ is the average number of triggered pixels, hv is the photon energy, f is the pulse repetition rate, $P_{\rm opt}$ is the optical power density, $A_{\rm SiC-PM}$ is the area od SiC-PM

Photodetection efficiency and dark count rate as functions of voltage bias

PDE increases linearly from 7 to 9% within the measured voltage range, while DCR slightly increases up to 290V and significantly grows up from ~0.4MHz/mm² at 290V to 2MHz/mm² at 296V

S.Dolinsky , GE Global Research

UV scintillators for SIC SSPM

Saint-Gobain Crystals

Cunt Cobu	in oryotal	<u> </u>											
			F	hysica	I Prope	erties o	of Commo	on Inor	ganic	Scinti	llator	s	
Scintillator	Light yield (photons/keV)	Light ouput (%) of Nal(TI) bialkali pmt	Temperature coefficient of light output (%/C) 25°C to 50°C	1/e Decay time (ns)	Wavelength of maximum emission Im (nm)	Refractive index at Im	Thickness to stop 50% of 662 keV photons (cm)	Thermal expansion (/C) x 10 ⁻⁶	Cleavage	Hardness (Mho)	Density g/cm ³	Hygroscopic	Comments
BrilLanCe™380 LaBr₃(Ce)	63	165	O	16	380	~1.9	1.8	8	<100>		5.08	yes	General purpose, best energy resolution, rate of change of light output w/temperature is small
Nal(TI)	38	100	-0.3	250	415	1.85	2.5	47.4	<100>	2	3.67	yes	General purpose, good energy resolution
Polyscin [®] Nal(TI)	38	100	-0.3	250	415	1.85	2.5	47.4	none	2	3.67	yes	Polycrystalline Nal(TI), for extra strength
BrilLanCe™350 LaCl ₃ (Ce)	49	70-90	0.7*	28	350	~1.9	2.3	11	<100>		3.85	yes	General purpose, excellent energy resolution
Csl(Na)	41	85	-0.05	630	420	1.84	2	54	none	2	4.51	yes	High Z, rugged
PreLude m/420 Lu _{1.8} Y _{.2} SiO ₅ (Ce)	32	75	-0.28	41	420	1.81	1.1		none		7.1	no	Bright, high Z, fast, dense, background from ¹⁷⁶ Lu activity
CdWO ₄	12 - 15	30-50	-0.1	14000	475	~2.3	1	10.2	<010>	4 - 4.5	7.9	no	High Z, low afterglow, for use with photodioides
CaF ₂ (Eu)	19	50	-0.33	940	435	1.47	2.9	19.5	<111>	4	3.18	no	Low Z, a & b detection
CsI(TI)	54	45	0.01	1000	550	1.79	2	54	none	2	4.51	slightly	High Z, rugged, good match to photodiodes
BGO	8 - 10	20	-1.2	300	480	2.15	1	7	none	5	7.13	no	High Z, compact detector, low afterglow
YAG(Ce), Y ₃ Al ₅ O ₁₂ (Ce)	8	15	-	70	550	1.82	2	~80	none	8.5	4.55	no	b-ray, X-ray counting, electron microscopy
Csl(pure)	2	4-6	-0.3	16	315	1.95	2	54	none	2	4.51	slightly	High Z, fast emission
BaF ₂	1.8	3	O	0.6 - 0.8	220(195)	1.54	1.9	18.4	<111>	3	4.88	slightly	Fast component (subnanosecond)
	10	16	-1.1	630	310	1.50	1.9	18.4	<111>	3	4.88	slightly	Slow component
ZnS(Ag)	~50	130	-0.6	110	450	2.36					4.09	no	Multicrystal, 15m stops 5.5 MeV a (n detection with ⁶ Li)

UV scintillators for SIC SSPM

Physical and Scintillation Properties							
Scintillators	Pr:LuAG	Ce:LYSO	BGO	Ce:LaBr ₃			
Density (g/cm3)	6.73	7.1	7.13	5.08			
Light yield (photon/MeV)	22,000	34,000	8,000	75,000			
Decay time (ns)	20	40	300	30			
Peak emission (nm)	310	420	480	360			
Energy resolution (%@662keV)	4.2	10	12	2.6			
Hygroscopicity	No	No	No	Yes			
Cleavage	No	No	No	No			
Melting point (°C)	2,043	2,150	1,050	783			

Contact:t-iwata@furukawakk.co.jp

http://www.crystals.saint-gobain.com/BrilLanCe_350_scintillator.aspx

Figure 2. Scintillation emission spectrum of the BrilLanCe 350 crystal and Quantum Efficiency of a bialkali ETI9266 PMT with (B)Borosilicate, (W)UV glass, and (Q)Quartz face plates

(Q.E. data courtesy of Electron Tubes, Inc.)

Testing SiC SSPM with scintillator crystal (LuYAG)

Active area of SiC SSPM 2x2 mm²

0.71 µC

SiC SSPM

Crystal LuYAG(Pr)

Output signal waveform at different temperatures

SiC SSPM with LuYAG crystal demonstrated a strong response from Gamma source at 200°C

Summary

- Silicon Carbide Solid-State Photomultiplier was demonstrated for the first time.
- Photon detection efficiency of the SiC-PM measured at 300 nm was about 8%, while a dark count rate was about 0.3MHz/mm² at room temperature.
- Time constant and peak amplitude of output signal significantly dependent on temperature, the time constant decreases from 3 us to 60 ns, while the peak amplitude increases in ~ 25 times with a temperature increase from 20 °C to 200 °C.
- SiC SSPM works with UV scintillators up to 200 °C

